Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Energy: Fossil Fuels
Published Controlling mosquito populations through genetic breeding



Researchers have found a new way to identify genetic targets useful for control of mosquito populations, potentially offering an alternative to insecticides. Their study focused on the genetic basis of species incompatibility. They crossed Ae. aegypti, a major global arboviral disease vector, and its sibling species, Ae. mascarensis, from the Indian Ocean. When offspring is crossed back with one parent, about 10 percent of the progeny becomes intersex and is unable to reproduce.
Published Transient structure in fly leg holds clue to insect shape formation



A little leg may reveal something big about how closely related insect species can drastically differ in body shape, according to a new study. The team imaged live cells of fruit flies in the last stages of development over several days and found a new structure that appears to help guide a section of the leg into its final shape.
Published Study shows new efficiency standards for heavy trucks could boost energy use



A new study suggests that the U.S. government's push to increase heavy-duty trucks' energy efficiency could encourage more shipping by truck instead of rail, reducing the policies' anticipated effectiveness by 20%.
Published Ancient viruses fuel modern-day cancers



The human genome is filled with flecks of DNA left behind by viruses that infected primate ancestors tens of millions of years ago. Scientists used to think they were harmless, but new research shows that, when reawakened, they help cancer survive and thrive.
Published Genome recording makes living cells their own historians



Genomes can now be used to store information about a variety of transient biological events inside of living cells, as they happen, like a flight recorder collecting data from an aircraft. The method, called ENGRAM, aims to turn cells into their own historians. ENGRAM couples each kind of biological signal or event inside a cell to a symbolic barcode. This new strategy traces and archives the type and timing of biological signals inside the cell by inserting this information into the genome. For example, this record-keeping can track the commands that turn genes on or off.
Published Unique characteristics of previously unexplored protein discovered



Research achieves scientific breakthrough in understanding cell division.
Published Ancient microbes offer clues to how complex life evolved



Researchers have discovered that a single-celled organism, a close relative of animals, harbors the remnants of ancient giant viruses woven into its own genetic code. This finding sheds light on how complex organisms may have acquired some of their genes and highlights the dynamic interplay between viruses and their hosts.
Published Big boost for new epigenetics paradigm: CoRSIVs, first discovered in humans, now found in cattle



A study opens new possibilities to improve production efficiency in the cattle industry and potentially animal agriculture more broadly.
Published New ways to study spinal cord malformations in embryos



Scientists have successfully created mechanical force sensors directly in the developing brains and spinal cords of chicken embryos, which they hope will improve understanding and prevention of birth malformations such as spina bifida.
Published Muscle machine: How water controls the speed of muscle contraction



The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Hydrogen flight looks ready for take-off with new advances



The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.
Published Opening the right doors: 'Jumping gene' control mechanisms revealed



International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease



Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.
Published New one-step method to make multiple edits to a cell's genome



A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support



An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.
Published Not so selfish after all: Viruses use freeloading genes as weapons



Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.
Published Researchers uncover key mechanisms in chromosome structure development



Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published A new breakthrough in understanding regeneration in a marine worm



The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Research shows how RNA 'junk' controls our genes



Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.