Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Engineering: Biometric

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Offbeat: General Offbeat: Plants and Animals
Published

With hybrid brains, these mice smell like a rat      (via sciencedaily.com)     Original source 

Mice lacking an olfactory system have had their sense of smell restored with neurons from rats, the first time scientists have successfully integrated the sensory apparatus of one species into another.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Advanced cell atlas opens new doors in biomedical research      (via sciencedaily.com)     Original source 

Researchers have developed a web-based platform that offers an unprecedented view of the human body at the cellular level. The aim is to create an invaluable resource for researchers worldwide to increase knowledge about human health and disease.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

After spinal cord injury, neurons wreak havoc on metabolism      (via sciencedaily.com)     Original source 

Conditions such as diabetes, heart attack and vascular diseases commonly diagnosed in people with spinal cord injuries can be traced to abnormal post-injury neuronal activity that causes abdominal fat tissue compounds to leak and pool in the liver and other organs, a new animal study has found.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Cells may possess hidden communication system      (via sciencedaily.com)     Original source 

Cells constantly navigate a dynamic environment, facing ever-changing conditions and challenges. But how do cells swiftly adapt to these environmental fluctuations? A new study is answering that question by challenging our understanding of how cells function. A team of researchers suggests that cells possess a previously unknown information processing system that allows them to make rapid decisions independent of their genes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Unveiling the mysteries of cell division in embryos with timelapse photography      (via sciencedaily.com)     Original source 

The beginning of life is shrouded in mystery. While the intricate dynamics of mitosis is well-studied in the so-called somatic cells -- the cells that have a specialized function, like skin and muscle cells -- they remain elusive in the first cells of our bodies, the embryonic cells. Embryonic mitosis is notoriously difficult to study in vertebrates, as live functional analyses and -imaging of experimental embryos are technically limited, which makes it hard to track cells during embryogenesis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Researchers create artificial cells that act like living cells      (via sciencedaily.com)     Original source 

Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Mathematics: Modeling
Published

AI tool creates 'synthetic' images of cells for enhanced microscopy analysis      (via sciencedaily.com)     Original source 

Researchers have developed a method to use an image generation AI model to create realistic images of single cells, which are then used as 'synthetic data' to train an AI model to better carry out single-cell segmentation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists discover the cellular functions of a family of proteins integral to inflammatory diseases      (via sciencedaily.com)     Original source 

In a scientific breakthrough, researchers have revealed the biological mechanisms by which a family of proteins known as histone deacetylases (HDACs) activate immune system cells linked to inflammatory bowel disease (IBD) and other inflammatory diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Protein network dynamics during cell division      (via sciencedaily.com)     Original source 

An international team has mapped the movement of proteins encoded by the yeast genome throughout its cell cycle. This is the first time that all the proteins of an organism have been tracked across the cell cycle, which required a combination of deep learning and high-throughput microscopy.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Zoology
Published

New compound from blessed thistle promotes functional nerve regeneration      (via sciencedaily.com)     Original source 

Blessed thistle (Cnicus benedictus) is a plant in the family Asteraceae. For centuries, it has been used as a medicinal herb as an extract or tea, e.g. to aid the digestive system. Researchers have now found a completely novel use for Cnicin. Animal models as well as human cells have shown that Cnicin significantly accelerates axon (nerve fibers) growth.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Light show in living cells      (via sciencedaily.com)     Original source 

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Solving a mini mystery of cell division      (via sciencedaily.com)     Original source 

Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers uncover human DNA repair by nuclear metamorphosis      (via sciencedaily.com)     Original source 

Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

How tardigrades can survive intense radiation      (via sciencedaily.com)     Original source 

Researchers have discovered that tardigrades -- microscopic animals famed for surviving harsh extremes -- have an unusual response to radiation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Unlocking the 'chain of worms'      (via sciencedaily.com)     Original source 

An international team of scientists has published a single-cell atlas for Pristina leidyi (Pristina), the water nymph worm, a segmented annelid with extraordinary regenerative abilities that has fascinated biologists for more than a century.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment      (via sciencedaily.com)     Original source 

The typical job of the proteasome, the garbage disposal of the cell, is to grind down proteins into smaller bits and recycle some of those bits and parts. That's still the case, for the most part, but researchers, studying nerve cells grown in the lab and mice, say that the proteasome's role may go well beyond that.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Animals Ecology: Sea Life Environmental: Ecosystems
Published

How seaweed became multicellular      (via sciencedaily.com)     Original source 

A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.