Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Engineering: Biometric
Published Elusive cytonemes guide neural development, provide signaling 'express route'



Discover the first images of cytonemes during mammalian neural development, serving as express routes to establish morphogen gradients and tissue patterning.
Published Big impacts from small changes in cell



Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.
Published How jellyfish regenerate functional tentacles in days



At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.
Published New tool unifies single-cell data



A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.
Published The future of canine stem cell therapy: unprecedented, painless, and feeder-free



Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.
Published Bugs that help bugs: How environmental microbes boost fruit fly reproduction



A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.
Published Researchers solve mystery behind DnaA protein's role in DNA replication initiation



Scientists have uncovered how DnaA, the master key to DNA replication, opens the door to bacterial growth. This breakthroughpaves the way for new antibiotics to combat the rising tide of antibiotic resistance.
Published New insights revealed on tissue-dependent roles of JAK signaling in inflammation



Researchers have gained a deeper understanding of the nuanced roles of JAK inhibitors, or modulators, in inflammation across various cell types and tissues.
Published How researchers are 'CReATiNG' synthetic chromosomes faster and cheaper



A new technique to clone and reassemble DNA, dubbed CReATiNG, could simplify and lower the cost to make synthetic chromosomes. Potential applications are numerous, including pharmaceutical production, biofuel generation, cancer therapies, and environmental cleanup using modified organisms. The method adds a powerful, versatile tool to the burgeoning field of synthetic biology.
Published A trillion scents, one nose



A research team has uncovered a previously undetected mechanism in mice -- starring the genetic molecule RNA -- that could explain how each sensory cell, or neuron, in mammalian noses becomes tailored to detect a specific odor chemical.
Published Cells of the future: A key to reprogramming cell identities



The intricate process of duplicating genetic information, referred to as DNA replication, lies at the heart of the transmission of life from one cell to another and from one organism to the next. This happens by not just simply copying the genetic information; a well-orchestrated sequence of molecular events has to happen at the right time. Scientists have recently uncovered a fascinating aspect of this process known as 'replication timing' (RT) and how special this is when life commences.
Published New study examines the relationship between the rate of wound healing, the circadian rhythm, and 'hair' on cells



Nearly every organism on Earth follows a natural circadian rhythm that is coded by your cell's clock genes, which do exactly as you suspect from the name: regulate your body's rhythm on a 24-hour basis. Most cells in mammalian bodies have cilia of some sort, which are hair-like structures that perform a variety of functions such as movement for motile cilia and aiding in structure in function for non-motile, or primary, cilia. The primary cilia also act as a sensory organ for the cell, a function which has illuminated the primary cilia's potential role in the healing process and how bodies heal at a different rate according to our circadian rhythm. In this research, the role of the primary cilia, biological clock and wound healing is explored.
Published Single-celled protists in the guts of animals thrive without the 'powerhouse of the cell'



Almost all eukaryotic organisms, from plants and animals to fungi, can't survive without mitochondria -- the 'powerhouses of the cell,' which generate chemical energy using oxygen. However, a new study finds that multiple members of the oxymonads, a group of single-celled protists that live inside the guts of termites and other animals, have evolved to live quite happily without them.
Published Genetic atlas detailing early stages of zebrafish development



Researchers have published an atlas of zebrafish development, detailing the gene expression programs that are activated within nearly every cell type during the first five days of development, a period in which embryos mature from a single cell into distinct cell types.
Published Can you change a chicken into a frog, a fish or a chameleon?



Researchers have developed a theoretical framework that can reproduce and predict the patterns associated with gastrulation in a chicken embryo.
Published How the immune system fights to keep herpes at bay



In a study of lab-engineered cells, researchers identify how the immune system neutralizes the herpesvirus. The research maps, for the first time, the maneuvers used by virus and host in the cell nucleus, a poorly understood terrain of host-pathogen interaction. The findings could inform the design of new treatments for herpes and other viruses that replicate in the same way.
Published Enzymes can't tell artificial DNA from the real thing



Researchers have come one step closer to unlocking the potential of synthetic DNA, which could help scientists develop never-before-seen proteins in the lab.
Published Scientists unveil complete cell map of a whole mammalian brain



Researchers have created a complete cell atlas of a whole mammalian brain. This atlas serves as a map for the mouse brain, describing the type, location, and molecular information of more than 32 million cells and providing information on connectivity between these cells.
Published Cells move in groups differently than they do when alone



A protein that helps generate the force needed for single cells to move works differently in cells moving in groups, a new study shows.
Published Mice possess natural gene therapy system



A previously mysterious small RNA molecule in mice is found to play a crucial role in gene expression, and may be the first identified member of a new class of regulatory RNAs.