Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Engineering: Graphene
Published Genetic atlas detailing early stages of zebrafish development



Researchers have published an atlas of zebrafish development, detailing the gene expression programs that are activated within nearly every cell type during the first five days of development, a period in which embryos mature from a single cell into distinct cell types.
Published Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices



Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.
Published Can you change a chicken into a frog, a fish or a chameleon?



Researchers have developed a theoretical framework that can reproduce and predict the patterns associated with gastrulation in a chicken embryo.
Published How the immune system fights to keep herpes at bay



In a study of lab-engineered cells, researchers identify how the immune system neutralizes the herpesvirus. The research maps, for the first time, the maneuvers used by virus and host in the cell nucleus, a poorly understood terrain of host-pathogen interaction. The findings could inform the design of new treatments for herpes and other viruses that replicate in the same way.
Published Enzymes can't tell artificial DNA from the real thing



Researchers have come one step closer to unlocking the potential of synthetic DNA, which could help scientists develop never-before-seen proteins in the lab.
Published Scientists unveil complete cell map of a whole mammalian brain



Researchers have created a complete cell atlas of a whole mammalian brain. This atlas serves as a map for the mouse brain, describing the type, location, and molecular information of more than 32 million cells and providing information on connectivity between these cells.
Published Cells move in groups differently than they do when alone



A protein that helps generate the force needed for single cells to move works differently in cells moving in groups, a new study shows.
Published Mice possess natural gene therapy system



A previously mysterious small RNA molecule in mice is found to play a crucial role in gene expression, and may be the first identified member of a new class of regulatory RNAs.
Published A rare enzyme role change with bacterial defense system assembly



Scientists have revealed a never-before-seen phenomenon in a protein: Alone, the enzyme processes DNA and RNA but, when bound to another protein as part of a defense system, interacts with a completely different type of compound to help bacteria commit suicide.
Published New genes can arise from nothing



The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published 'Shocking' discovery: Electricity from electric eels may transfer genetic material to nearby animals



Researchers have discovered that electric eels can alter the genes of tiny fish larvae with their electric shock. Their findings help to better understand electroporation, a method by which genes can be transported using electricity.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.
Published New technique efficiently offers insight into gene regulation



Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.
Published Clever dosage control mechanism of biallelic genes



Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.
Published Tracing the evolution of the 'little brain'



The evolution of higher cognitive functions in humans has so far mostly been linked to the expansion of the neocortex. Researchers are increasingly realizing, however, that the 'little brain' or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans. A research team has now generated comprehensive genetic maps of the development of cells in the cerebella of human, mouse and opossum. Comparisons of these maps reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development.
Published This sea worm's posterior body part swims away, and now scientists know how



A research team shows how the expression of developmental genes in the Japanese green syllid worms, Megasyllis nipponica, helps form their swimming reproductive unit called stolon.
Published Nutrient found in beef and dairy improves immune response to cancer



Trans-vaccenic acid (TVA), a long-chain fatty acid found in meat and dairy products from grazing animals such as cows and sheep, improves the ability of CD8+ T cells to infiltrate tumors and kill cancer cells, according to a new study.
Published Unearthing how a carnivorous fungus traps and digests worms



A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.