Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Engineering: Robotics Research
Published Protein network dynamics during cell division



An international team has mapped the movement of proteins encoded by the yeast genome throughout its cell cycle. This is the first time that all the proteins of an organism have been tracked across the cell cycle, which required a combination of deep learning and high-throughput microscopy.
Published New compound from blessed thistle promotes functional nerve regeneration



Blessed thistle (Cnicus benedictus) is a plant in the family Asteraceae. For centuries, it has been used as a medicinal herb as an extract or tea, e.g. to aid the digestive system. Researchers have now found a completely novel use for Cnicin. Animal models as well as human cells have shown that Cnicin significantly accelerates axon (nerve fibers) growth.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Octopus inspires new suction mechanism for robots



A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists.
Published An ink for 3D-printing flexible devices without mechanical joints



Researchers are targeting the next generation of soft actuators and robots with an elastomer-based ink for 3D printing objects with locally changing mechanical properties, eliminating the need for cumbersome mechanical joints.
Published How 3D printers can give robots a soft touch



Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
Published Solving a mini mystery of cell division



Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.
Published Novel robotic training program reduces physician errors placing central lines



More than five million central lines are placed in patients who need prolonged drug delivery, such as those undergoing cancer treatments, in the United States every year, yet the common procedure can lead to a bevy of complications in almost a million of those cases. Researchers developed a robotic simulation training program to provide trainee physicians with more practice on the procedure. A year after deploying the program the team found that all complication types -- mechanical issues, infections and blood clots -- were significantly lower.
Published Researchers uncover human DNA repair by nuclear metamorphosis



Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.
Published Plastic pollution can kill variety of ocean embryos



High levels of plastic pollution can kill the embryos of a wide range of ocean animals, new research shows.
Published How tardigrades can survive intense radiation



Researchers have discovered that tardigrades -- microscopic animals famed for surviving harsh extremes -- have an unusual response to radiation.
Published Unlocking the 'chain of worms'



An international team of scientists has published a single-cell atlas for Pristina leidyi (Pristina), the water nymph worm, a segmented annelid with extraordinary regenerative abilities that has fascinated biologists for more than a century.
Published Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment



The typical job of the proteasome, the garbage disposal of the cell, is to grind down proteins into smaller bits and recycle some of those bits and parts. That's still the case, for the most part, but researchers, studying nerve cells grown in the lab and mice, say that the proteasome's role may go well beyond that.
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published First step to untangle DNA: Supercoiled DNA captures gyrase like a lasso ropes cattle



Researchers reveal how DNA gyrase resolves DNA entanglements. The findings not only provide novel insights into this fundamental biological mechanism but also have potential practical applications. Gyrases are biomedical targets for the treatment of bacterial infections and the similar human versions of the enzymes are targets for many anti-cancer drugs. Better understanding of how gyrases work at the molecular level can potentially improve clinical treatments.
Published Star Trek's Holodeck recreated using ChatGPT and video game assets



Star Trek's Holodeck is no longer just science fiction. Using AI, engineers have created a tool that can generate 3D environments, prompted by everyday language.
Published Biofortified rice to combat deficiencies



Vitamin B1 is an essential micronutrient for human beings. Its deficiency is the cause of numerous diseases of the nervous and cardiovascular systems. Researchers have achieved a significant advance in the fight against vitamin B1 deficiency, frequently associated with a rice-based diet. By specifically targeting the nourishing tissues of the rice grain, the scientists have succeeded in considerably increasing its vitamin B1 content, without compromising agronomic yield. These results could help solve a major public health problem in regions where rice is the staple food.
Published Cockayne syndrome: New insights into cellular DNA repair mechanism



Researchers decode repair mechanism during transcription of genetic information.
Published Machine learning method reveals chromosome locations in individual cell nucleus



Researchers have made a significant advancement toward understanding how the human genome is organized inside a single cell. This knowledge is crucial for analyzing how DNA structure influences gene expression and disease processes.
Published Different means to the same end: How a worm protects its chromosomes



Researchers have discovered that a worm commonly used in the study of biology uses a set of proteins unlike those seen in other studied organisms to protect the ends of its DNA.