Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Physics: Quantum Computing
Published Defect in fruit fly respiratory system may provide insights into human aortic aneurysms



A team of researchers has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Scientists carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio.
Published Bacteria can enhance host insect's fertility with implications for disease control



New research reveals how the bacteria strain Wolbachia pipientis enhances the fertility of the insects it infects, an insight that could help scientists increase the populations of mosquitoes that do not carry human disease.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published What do new moms and roaches have in common?



Researchers are studying the dramatic physical transformation that some insects undergo to give birth to live young. This includes suppressing their immune systems to accommodate babies, which is something some insects and people have in common. Understanding how these systems work can help improve treatments for fibromyalgia and other immune disorders. An international team of researchers has examined the complex structural and physiological changes that take place in Hawaii's beetle-mimic cockroaches, which give birth to live young.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published Restoring the function of a human cell surface protein in yeast cells



Yeast cells are widely used to study G protein-coupled receptors (GPCRs), a large group of cell surface proteins in humans. However, several of these proteins lose their function when introduced into yeast cells. To tackle this issue, researchers developed an innovative strategy to restore GPCR function in yeast cells by inducing random mutations. Their findings can help understand GPCRs better and could pave the way to therapeutic breakthroughs for many diseases.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Stolen genes allow parasitic control of behavior



A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.
Published Soft optical fibers block pain while moving and stretching with the body



New soft, implantable fibers can deliver light to major nerves through the body. They are an experimental tool for scientists to explore the causes and potential treatments for peripheral nerve disorders in animal models.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published New insights into the genetics of the common octopus: Genome at the chromosome level decoded



Octopuses are fascinating animals -- and serve as important model organisms in neuroscience, cognition research and developmental biology. To gain a deeper understanding of their biology and evolutionary history, validated data on the composition of their genome is needed, which has been lacking until now. Scientists have now been able to close this gap and, in a new study, determined impressive figures: 2.8 billion base pairs -- organized in 30 chromosomes. What sounds so simple is the result of complex, computer-assisted genome analyses and comparisons with the genomes of other cephalopod species.
Published Unlocking the secrets of cell behavior on soft substrates: A paradigm shift in mechanobiology



A research group has developed a new method for studying how cancer cells function in softer and stiffer tissue environments. This insight challenges the existing paradigm, opening up new possibilities for research in cancer biology and tissue engineering.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.
Published Scientists unveil detailed cell maps of the human brain and the nonhuman primate brain



A group of international scientists have mapped the genetic, cellular, and structural makeup of the human brain and the nonhuman primate brain. This understanding of brain structure allows for a deeper knowledge of the cellular basis of brain function and dysfunction, helping pave the way for a new generation of precision therapeutics for people with mental disorders and other disorders of the brain.
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published The end of genes: Routine test reveals unique divergence in genetic code



Scientists testing a new method of sequencing single cells have unexpectedly changed our understanding of the rules of genetics. The genome of a protist has revealed a seemingly unique divergence in the DNA code signalling the end of a gene, suggesting the need for further research to better understand this group of diverse organisms.
Published New open-source method to improve decoding of single-cell data



Researchers have developed a new open-source computational method, dubbed Spectra, which improves the analysis of single-cell transcriptomic data. By guiding data analysis in a unique way, Spectra can offer new insights into the complex interplay between cells — like the interactions between cancer cells and immune cells, which are critical to improving immunotherapy treatments.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.