Showing 20 articles starting at article 781

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Physics: Quantum Computing

Return to the site home page

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Ecology: Endangered Species
Published

Compressive stress shapes the symmetry of Arabidopsis root vascular tissue      (via sciencedaily.com) 

A cytokinin-mediated, proliferation-based mechanism is involved in the generation and maintenance of cell-type specific tissue boundaries during vascular development in Arabidopsis roots. Specifically, the HANABA-TARANU transcription factor forms a feed-forward loop to cytokinin signaling, which in turn regulates the position and frequency of cell proliferation of proto-vascular cells such that mechanical stress of the surrounding tissues guides growth in an apical-oriented manor, maintaining cell patterning throughout the tissue section.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Where the HI-Virus sleeps in the brain      (via sciencedaily.com) 

The human immunodeficiency virus HIV-1 is able to infect various tissues in humans. Once inside the cells, the virus integrates its genome into the cellular genome and establishes persistent infections. The role of the structure and organization of the host genome in HIV-1 infection is not well understood. Using a cell culture model based on brain immune microglia cells, an international research team has now defined the insertion patterns of HIV-1 in the genome of microglia cells.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cellular waste removal differs according to cell type      (via sciencedaily.com) 

'Miniature shredders' are at work in each cell, disassembling and recycling cell components that are defective or no longer required. The exact structure of these shredders differs from cell type to cell type, a study now shows. For example, cancer cells have a special variant that can supply them particularly effectively with building blocks for their energy metabolism.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

Researchers highlight nucleolar DNA damage response in fight against cancer      (via sciencedaily.com) 

Researchers have now encapsulated the young field of nucleolar DNA damage response (DDR) pathways. A new review highlights six mechanisms by which cells repair DNA damage. By attacking these mechanisms, future applied researchers will be able to trip up cancer's reproduction and growth.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Molecular component of caffeine may play a role in gut health      (via sciencedaily.com) 

A new study explores exactly what leads to the generation of Th17 cells -- an important subtype of cells in the intestine -- and uncovers some of the underappreciated molecular players and events that lead to cell differentiation in the gut.

Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular Geoscience: Geochemistry
Published

Mirror-image molecules can modify signaling in neurons      (via sciencedaily.com) 

With the aid of some sea slugs, chemists have discovered that one of the smallest conceivable tweaks to a biomolecule can elicit one of the grandest conceivable consequences: directing the activation of neurons. The team has shown that the orientation of a single amino acid -- in this case, one of dozens found in the neuropeptide of a sea slug -- can dictate the likelihood that the peptide activates one neuron receptor versus another. Because different types of receptors are responsible for different neuronal activities, the finding points to another means by which a brain or nervous system can regulate the labyrinthine, life-sustaining communication among its cells.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

TurboID uncovers new meiotic proteins in Arabidopsis thaliana      (via sciencedaily.com) 

Meiotic recombination assures genetic variation during breeding. During meiotic prophase I, chromosomes are organized in a loop-base array by a proteinaceous structure called meiotic chromosome axis which is critical for meiotic recombination and genetically diverse gametes. An international research team reports the application of a TurboID (TbID)-based approach to identify proteins in proximity of meiotic chromosome axes in Arabidopsis thaliana. Not only known but also new meiotic proteins were uncovered.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A quick new way to screen virus proteins for antibiotic properties      (via sciencedaily.com) 

A whole new world of antibiotics is waiting inside the viruses that infect bacteria. Scientists are making it easier to study them.

Chemistry: Inorganic Chemistry Energy: Technology Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment unlocks bizarre properties of strange metals      (via sciencedaily.com) 

Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.

Biology: Biotechnology Biology: Developmental Biology: Genetics Biology: Molecular
Published

How to assemble a complete jaw      (via sciencedaily.com) 

The skeleton, tendons, and glands of a functional jaw all derive from the same population of stem cells, which arise from a cell population known as neural crest. To discover how these neural crest-derived cells know to make the right type of cell in the right location, researchers focused on a particular gene, Nr5a2, that was active in a region of the face that makes tendons and glands, but not skeleton. To understand the role of Nr5a2, the scientists created zebrafish lacking this gene. These mutant zebrafish generated excess cartilage and were missing tendons in their jaws.

Biology: Developmental
Published

New study challenges our understanding of the immune system      (via sciencedaily.com) 

Researchers have created a radical new view of how immune cells recognise threats such as viruses. The discovery could be used to design better vaccines and to gain a deeper insight into autoimmune diseases and allergies.

Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New insights into cellular 'bridges' shed light on development, disease      (via sciencedaily.com) 

Most cells in the bodies of living things duplicate their contents and physically separate into new cells through the process of cell division. But across many species, germ cells, those that become eggs or sperm, don't fully separate. They remain interconnected through small bridges called ring canals and cluster together. In a new study, researchers uncover how it is that germ cells in fruit flies form these ring canals, a finding that they say will provide new insights into a widely shared feature of development and into diseases in which cell division is disrupted.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Biology: Botany Biology: Developmental Ecology: Endangered Species Ecology: Nature
Published

An internal thermometer tells the seeds when to germinate      (via sciencedaily.com) 

Germination is a crucial stage in the life of a plant as it will leave the stage of seed resistant to various environmental constraints (climatic conditions, absence of nutritive elements, etc.) to become a seedling much more vulnerable. The survival of the young plant depends on the timing of this transition. It is therefore essential that this stage be finely controlled. Botanists have now discovered the internal thermometer of seeds that can delay or even block germination if temperatures are too high for the future seedling. This work could help optimize plant growth in a context of global warming.

Biology: Biotechnology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Phage attacks shown in new light      (via sciencedaily.com) 

New methodology and tools provide an opportunity to watch in unprecedented detail as a phage attacks a bacterium.