Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Physics: Optics
Published Stacking molecules like plates improves organic solar device performance



Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.
Published Seismic detectors measure soil moisture using traffic noise



Using state of the art techniques, researchers use vibrations from traffic to measure underground soil moisture.
Published Cracking the code of life: new AI model learns DNA's hidden language



With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.
Published Allergy cells' hidden secret



Known for their role in allergic reactions, mast cells have long been recognised as key players in our immune system. When they encounter allergens, they release chemicals that trigger typical allergy symptoms such as tissue swelling and inflammation. Now, researchers have discovered a hidden talent of mast cells: they can capture and use another type of immune cell called neutrophils. This surprising discovery sheds new light on how our immune system works, particularly during allergic reactions.
Published Coinfecting viruses impede each other's ability to enter cells



The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.
Published Genetic signatures of domestication identified in pigs, chickens



Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.
Published Precise package delivery in cells?



Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published Stacked up against the rest



Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.
Published Talking about regeneration



Researchers transferred genes from simple organisms capable of regenerating their bodies into common fruit flies, more complex animals that cannot. They found the transferred gene suppressed an age-related intestinal issue in the flies. Their results suggest studying genes specific to animals with high regenerative capability may uncover new mechanisms for rejuvenating stem cell function and extending the healthy lifespan of unrelated organisms.
Published Mass extinction 66 million years ago triggered rapid evolution of bird genomes



Study finds that the mass extinction caused by an asteroid about 66 million years ago led to critical changes in bird genomes that ultimately sparked the incredibly diversity living birds.
Published More electricity from the sun



A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published Physicists use light to probe deeper into the 'invisible' energy states of molecules



Physicists have experimentally demonstrates a novel physical effect that was predicted 45 years ago. The effect will result in a new chemical analysis technique, to simultaneously identify molecular bonds and their 3D arrangement in space. This new technique will find applications in pharmaceutical science, security, forensics, environmental science, art conservation, and medicine.
Published Green hydrogen: 'Artificial leaf' becomes better under pressure



Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team has now shown that the efficiency of PEC cells can be significantly increased under pressure.
Published Unraveling a key junction underlying muscle contraction



Using powerful new visualization technologies, researchers have captured the first 3-D images of the structure of a key muscle receptor, providing new insights on how muscles develop across the animal kingdom and setting the stage for possible future treatments for muscular disorders.
Published Super-black wood can improve telescopes, optical devices and consumer goods



Thanks to an accidental discovery, researchers have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive



Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.
Published Precise genetics: New CRISPR method enables efficient DNA modification



A research group has developed a new method that further improves the existing CRISPR/Cas technologies: it allows a more precise and seamless introduction of tags into proteins at the gene level. This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.
Published How researchers turn bacteria into cellulose-producing mini-factories



Researchers have modified certain bacteria with UV light so that they produce more cellulose. The basis for this is a new approach with which the researchers generate thousands of bacterial variants and select those that have developed into the most productive.
Published Researchers trap atoms, forcing them to serve as photonic transistors



Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.