Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Computer Science: General

Return to the site home page

Computer Science: Encryption Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

Mechanical computer relies on kirigami cubes, not electronics      (via sciencedaily.com)     Original source 

Researchers have developed a kirigami-inspired mechanical computer that uses a complex structure of rigid, interconnected polymer cubes to store, retrieve and erase data without relying on electronic components. The system also includes a reversible feature that allows users to control when data editing is permitted and when data should be locked in place.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Slipping a note to a neighbor: The cellular way      (via sciencedaily.com)     Original source 

Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.

Computer Science: General Mathematics: Statistics
Published

Balancing act: Novel wearable sensors and AI transform balance assessment      (via sciencedaily.com)     Original source 

Traditional methods to assess balance often suffer from subjectivity, aren't comprehensive enough and can't be administered remotely. They also are expensive and require specialized equipment and clinical expertise. Using wearable sensors and advanced machine learning algorithms, researchers offer a practical and cost-effective solution for capturing detailed movement data, essential for balance analysis. This approach is more accessible and can be administered remotely, which could have significant implications for health care, rehabilitation, sports science or other fields where balance assessment is important.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zebrafish reveal how bioelectricity shapes muscle development      (via sciencedaily.com)     Original source 

New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of vast sex differences in cellular activity has major implications for disease treatment      (via sciencedaily.com)     Original source 

The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

Researchers develop new training technique that aims to make AI systems less socially biased      (via sciencedaily.com)     Original source 

Researchers have created a new, cost-effective training technique for artificial intelligence systems that aims to make them less socially biased.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

Next platform for brain-inspired computing      (via sciencedaily.com)     Original source 

Computers have come so far in terms of their power and potential, rivaling and even eclipsing human brains in their ability to store and crunch data, make predictions and communicate. But there is one domain where human brains continue to dominate: energy efficiency.

Chemistry: Biochemistry Computer Science: General Energy: Technology
Published

Researchers engineer AI path to prevent power outages      (via sciencedaily.com)     Original source 

Researchers developed an artificial intelligence (AI) model that could help electrical grids prevent power outages by automatically rerouting electricity in milliseconds. The approach is an early example of 'self-healing grid' technology, which uses AI to detect and repair problems such as outages autonomously and without human intervention when issues occur, such as storm-damaged power lines.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cells boost gene expression      (via sciencedaily.com)     Original source 

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

How to make aging a 'fairer game' for all wormkind      (via sciencedaily.com)     Original source 

Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.

Chemistry: Biochemistry Computer Science: General Mathematics: General
Published

A railroad of cells      (via sciencedaily.com)     Original source 

Looking under the microscope, a group of cells slowly moves forward in a line, like a train on the tracks. The cells navigate through complex environments. A new approach now shows how they do this and how they interact with each other.

Computer Science: General Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Researchers leverage shadows to model 3D scenes, including objects blocked from view      (via sciencedaily.com)     Original source 

A new technique can model an entire 3D scene, including areas hidden from view, from just one camera image. The method relies on image shadows, which provide information about the geometry and location of hidden objects.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Where to put head and tail?      (via sciencedaily.com)     Original source 

Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

Researchers teach AI to spot what you're sketching      (via sciencedaily.com)     Original source 

A new way to teach artificial intelligence (AI) to understand human line drawings -- even from non-artists -- has been developed.

Computer Science: General
Published

Wirelessly powered relay will help bring 5G technology to smart factories      (via sciencedaily.com)     Original source 

A recently developed wirelessly powered 5G relay could accelerate the development of smart factories, report scientists. By adopting a lower operating frequency for wireless power transfer, the proposed relay design solves many of the current limitations, including range and efficiency. In turn, this allows for a more versatile and widespread arrangement of sensors and transceivers in industrial settings.

Computer Science: General Mathematics: Modeling
Published

Simplicity versus adaptability: Understanding the balance between habitual and goal-directed behaviors      (via sciencedaily.com)     Original source 

Scientists have proposed a new AI method in which systems of habitual and goal-directed behaviors learn to help each other. Through computer simulations that mimicked the exploration of a maze, the method quickly adapts to changing environments and also reproduced the behavior of humans and animals after they had been accustomed to a certain environment for a long time. The study not only paves the way for the development of systems that adapt quickly and reliably in the burgeoning field of AI, but also provides clues to how we make decisions in the fields of neuroscience and psychology.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

AI recognizes athletes' emotions      (via sciencedaily.com)     Original source 

Using computer-assisted neural networks, researchers have been able to accurately identify affective states from the body language of tennis players during games. For the first time, they trained a model based on artificial intelligence (AI) with data from actual games. Their study demonstrates that AI can assess body language and emotions with accuracy similar to that of humans. However, it also points to ethical concerns.

Biology: Microbiology Computer Science: General
Published

Computable species descriptions: Scientists develop a new computer language to model organismal traits      (via sciencedaily.com)     Original source 

Understanding organismal traits and learning how they evolve and adapt to different environments is crucial for biologists and the battle against biodiversity loss. To be truly efficient, however, the researchers need to use huge amounts of data, including physical traits and DNA. Furthermore, those different data types need to be accurately linked to each other, so that computers and next-age AI technology can correctly process it. Currently, this process of accurate linking is extremely difficult and largely inefficient. To solve this problem, researchers created a brand new computer language called Phenoscript.

Biology: Botany Computer Science: General Ecology: Endangered Species
Published

AI shows how field crops develop      (via sciencedaily.com)     Original source 

Researchers developed software that can simulate the growth of field crops. To do this, they fed thousands of photos from field experiments into a learning algorithm. This enabled the algorithm to learn how to visualize the future development of cultivated plants based on a single initial image. Using the images created during this process, parameters such as leaf area or yield can be estimated accurately.