Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Computer Science: Quantum Computers
Published World's smallest quantum light detector on a silicon chip



Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.
Published Plants restrict use of 'Tipp-Ex proteins'



Plants have special corrective molecules at their disposal that can make retrospective modifications to copies of genes. However, it would appear that these 'Tipp-Ex proteins' do not have permission to work in all areas of the cell, only being used in chloroplasts and mitochondria. A study has now explained why this is the case. It suggests that the correction mechanism would otherwise modify copies that have nothing wrong with them, with fatal consequences for the cell.
Published Fruit fly wing research offers window into birth defects



If fruit fly wings do not develop into the right shape, the flies will die. Researchers have learned how fly embryo cells develop as they need to, opening a window into human development and possible treatments for birth defects.
Published A new 'rule of biology' may have come to light, expanding insight into evolution and aging



A molecular biologist may have found a new 'rule of biology.' The rule challenges long-held notions that most living organisms prefer stability over instability because stability requires less energy and fewer resources.
Published Wavefunction matching for solving quantum many-body problems



Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Like dad and like mum ... all in one plant



Scientists have established a system to generate clonal sex cells in tomato plants and used them to design the genomes of offspring. The fertilization of a clonal egg from one parent by a clonal sperm from another parent led to plants containing the complete genetic information of both parents.
Published Research on centromere structure yields new insights into the mechanisms of chromosome segregation errors



Researchers have made a surprising new discovery in the structure of the centromere, a structure that is involved in ensuring that chromosomes are segregated properly when a cell divides. Mistakes in chromosome segregation can lead to cell death and cancer development. The researchers discovered that the centromere consists of two subdomains. This fundamental finding has important implications for the process of chromosome segregation and provides new mechanisms underlying erroneous divisions in cancer cells. The research was published in Cell on May 13th 2024.
Published Cellular activity hints that recycling is in our DNA



Introns are perhaps one of our genome's biggest mysteries. They are DNA sequences that interrupt the sensible protein-coding information in your genes, and need to be 'spliced out.'
Published New tool to boost battle against childhood undernutrition



The tool will help researchers better understand major challenges that afflict undernourished children, such as changes in cognitive development and higher infection rates.
Published New sex-determining mechanism in African butterfly discovered



In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published Fruit fly model identifies key regulators behind organ development



A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.
Published Progression of herpesvirus infection remodels mitochondrial organization and metabolism



Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.
Published How a 'conductor' makes sense of chaos in early mouse embryos



The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.
Published New super-pure silicon chip opens path to powerful quantum computers



Researchers have invented a breakthrough technique for manufacturing highly purified silicon that brings powerful quantum computers a big step closer.
Published Using advanced genetic techniques, scientists create mice with traits of Tourette disorder



In research that may be a step forward toward finding personalized treatments for Tourette disorder, scientists have bred mice that exhibit some of the same behaviors and brain abnormalities seen in humans with the disorder.
Published Experiment opens door for millions of qubits on one chip



Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.