Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

100 kilometers of quantum-encrypted transfer      (via sciencedaily.com)     Original source 

Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

When inequality is more than 'skin-deep': Social status leaves traces in the epigenome of spotted hyenas in Tanzania      (via sciencedaily.com)     Original source 

A research consortium provides evidence that social behavior and social status are reflected at the molecular level of gene activation (epigenome) in juvenile and adult free-ranging spotted hyenas. They analyzed non-invasively collected gut epithelium samples from both high-ranking and low-ranking female hyenas and showed that rank differences were associated with epigenetic signatures of social inequality, i.e., the pattern of activation or switching off of genes that regulate important physiological processes such as energy conversion and immune response in several genome regions.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Cell division quality control 'stopwatch' uncovered      (via sciencedaily.com)     Original source 

Biologists have uncovered a quality control timing mechanism tied to cell division. The 'stopwatch' function keeps track of mitosis and acts as a protective measure when the process takes too long, preventing the formation of cancerous cells.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Connecting the dots to shape growth forces      (via sciencedaily.com)     Original source 

Branching patterns are prevalent in our natural environment and the human body, such as in the lungs and kidneys. For example, specific genes that express growth factor proteins are known to influence the development of the lungs' complex branches. Researchers have unveiled a regulatory system linking signal, force, and shape in mouse lung structure development. The team recognized that the signal protein ERK plays an active role in causing growing lung tissue to curve.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of cooling for quantum simulators      (via sciencedaily.com)     Original source 

Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Old immune systems revitalized in mouse study, improving vaccine response      (via sciencedaily.com)     Original source 

Those with aging immune systems struggle to fight off novel viruses and respond weakly to vaccination. Researchers were able to revitalize the immune system in mice.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Bullseye! Accurately centering quantum dots within photonic chips      (via sciencedaily.com)     Original source 

Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

GPT-4 for identifying cell types in single cells matches and sometimes outperforms expert methods      (via sciencedaily.com)     Original source 

GPT-4 can accurately interpret types of cells important for the analysis of single-cell RNA sequencing -- a sequencing process fundamental to interpreting cell types -- with high consistency compared to that of time-consuming manual annotation by human experts of gene information.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Computer Science: General Computer Science: Quantum Computers
Published

Novel quantum algorithm for high-quality solutions to combinatorial optimization problems      (via sciencedaily.com)     Original source 

Conventional quantum algorithms are not feasible for solving combinatorial optimization problems (COPs) with constraints in the operation time of quantum computers. To address this issue, researchers have developed a novel algorithm called post-processing variationally scheduled quantum algorithm. The novelty of this innovative algorithm lies in the use of a post-processing technique combined with variational scheduling to achieve high-quality solutions to COPs in a short time.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

As we age, our cells are less likely to express longer genes      (via sciencedaily.com)     Original source 

Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Research finds a direct communication path between the lungs and the brain      (via sciencedaily.com)     Original source 

New research finds a direct communication path between the lungs and the brain which may change the way we treat respiratory infections and chronic conditions. The lungs are using the same sensors and neurons in the pain pathway to let the brain know there's an infection. The brain then prompts the symptoms associated with sickness. Findings indicate we may have to treat the nervous system as well as the infection.

Computer Science: General Computer Science: Quantum Computers
Published

Verifying the work of quantum computers      (via sciencedaily.com)     Original source 

Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species
Published

Decoding the Easter Bunny -- an eastern Finnish brown hare to represent the standard for the species' genome      (via sciencedaily.com)     Original source 

Biologists have published a chromosomally assembled reference genome for the European brown hare. The genome consists of 2.9 billion base pairs, which form 23 autosomal chromosomes, and X and Y sex chromosomes. The timing of the genome release is very appropriate as the brown hare also represents the original Easter Bunny familiar from European folklore.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Animals Geoscience: Geochemistry
Published

Genes identified that allow bacteria to thrive despite toxic heavy metal in soil      (via sciencedaily.com)     Original source 

Some soil bacteria can acquire sets of genes that enable them to pump the heavy metal nickel out of their systems, a study has found. This enables the bacteria to not only thrive in otherwise toxic soils but help plants grow there as well. A research team pinpointed a set of genes in wild soil bacteria that allows them to do this in serpentine soils which have naturally high concentrations of toxic nickel. The genetic discovery could help inform future bioremediation efforts that seek to return plants to polluted soils.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Mathematics: Puzzles
Published

Where quantum computers can score      (via sciencedaily.com)     Original source 

The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.