Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Computer Science: Quantum Computers
Published Precise genetics: New CRISPR method enables efficient DNA modification



A research group has developed a new method that further improves the existing CRISPR/Cas technologies: it allows a more precise and seamless introduction of tags into proteins at the gene level. This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.
Published How researchers turn bacteria into cellulose-producing mini-factories



Researchers have modified certain bacteria with UV light so that they produce more cellulose. The basis for this is a new approach with which the researchers generate thousands of bacterial variants and select those that have developed into the most productive.
Published Researchers trap atoms, forcing them to serve as photonic transistors



Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.
Published Researchers decipher new molecular mechanisms related to biological tissue regeneration



A study opens new perspectives to better understand how the molecular mechanisms involved in regenerative medicine work. The study focuses on tumor necrosis factor- (TNF- ) and its receptors TNFR, molecules of key interest in biomedicine due to their involvement in multiple diseases such as obesity related to type 2 diabetes mellitus, inflammatory bowel disease and several types of cancer.
Published Optical fibers fit for the age of quantum computing



A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published Lampreys possess a 'jaw-dropping' evolutionary origin



Lampreys are one of only two living jawless vertebrates Jaws are formed by a key stem cell population called the neural crest New research reveals the gene regulatory changes that may explain morphological differences between jawed and jawless vertebrates.
Published Folded peptides are more electrically conductive than unfolded peptides



What puts the electronic pep in peptides? A folded structure, according to a new study. Researchers combined single-molecule experiments, molecular dynamics simulations and quantum mechanics to validate the findings.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Quantum sensor for the atomic world



In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published New groups of methane-producing organisms in Yellowstone



The team verified that microbes found in Yellowstone National Park hot springs produce methane to grow.
Published Researchers are closing in on a mouse model for late-onset Alzheimer's



Researchers are working to create the first strain of mice that's genetically susceptible to late-onset Alzheimer's, with potentially transformative implications for dementia research.
Published Research sheds light on the role of PTPRK in tissue repair and cancer



New research has advanced our knowledge of multiple roles for PTPRK, a receptor tyrosine phosphatase linked to the regulation of cell-cell adhesion, growth factor signalling and tumor suppression. Through a characterization of the function of PTPRK in human cell lines and mice, the team distinguished catalytic and non-catalytic functions of PTPRK. The findings extend what is known about the signalling mechanisms involving PTPRK as a phosphatase and its role in colorectal health but also shed new light on the extent of its function via non-catalytic signalling mechanisms.
Published Dual action antibiotic could make bacterial resistance nearly impossible



New drug that disrupts two cellular targets would make it much harder for bacteria to evolve resistance.
Published Fruit fly post-mating behavior controlled by male-derived peptide via command neurons, study finds



Scientists have succeeded in pinpointing the neurons within a female fruit fly's brain that respond to signals from the male during mating.
Published Controlling mosquito populations through genetic breeding



Researchers have found a new way to identify genetic targets useful for control of mosquito populations, potentially offering an alternative to insecticides. Their study focused on the genetic basis of species incompatibility. They crossed Ae. aegypti, a major global arboviral disease vector, and its sibling species, Ae. mascarensis, from the Indian Ocean. When offspring is crossed back with one parent, about 10 percent of the progeny becomes intersex and is unable to reproduce.
Published Transient structure in fly leg holds clue to insect shape formation



A little leg may reveal something big about how closely related insect species can drastically differ in body shape, according to a new study. The team imaged live cells of fruit flies in the last stages of development over several days and found a new structure that appears to help guide a section of the leg into its final shape.
Published Ancient viruses fuel modern-day cancers



The human genome is filled with flecks of DNA left behind by viruses that infected primate ancestors tens of millions of years ago. Scientists used to think they were harmless, but new research shows that, when reawakened, they help cancer survive and thrive.
Published Genome recording makes living cells their own historians



Genomes can now be used to store information about a variety of transient biological events inside of living cells, as they happen, like a flight recorder collecting data from an aircraft. The method, called ENGRAM, aims to turn cells into their own historians. ENGRAM couples each kind of biological signal or event inside a cell to a symbolic barcode. This new strategy traces and archives the type and timing of biological signals inside the cell by inserting this information into the genome. For example, this record-keeping can track the commands that turn genes on or off.
Published Unique characteristics of previously unexplored protein discovered



Research achieves scientific breakthrough in understanding cell division.