Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Computer Science: Quantum Computers
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published New insights into the genetics of the common octopus: Genome at the chromosome level decoded



Octopuses are fascinating animals -- and serve as important model organisms in neuroscience, cognition research and developmental biology. To gain a deeper understanding of their biology and evolutionary history, validated data on the composition of their genome is needed, which has been lacking until now. Scientists have now been able to close this gap and, in a new study, determined impressive figures: 2.8 billion base pairs -- organized in 30 chromosomes. What sounds so simple is the result of complex, computer-assisted genome analyses and comparisons with the genomes of other cephalopod species.
Published Unlocking the secrets of cell behavior on soft substrates: A paradigm shift in mechanobiology



A research group has developed a new method for studying how cancer cells function in softer and stiffer tissue environments. This insight challenges the existing paradigm, opening up new possibilities for research in cancer biology and tissue engineering.
Published Scientists unveil detailed cell maps of the human brain and the nonhuman primate brain



A group of international scientists have mapped the genetic, cellular, and structural makeup of the human brain and the nonhuman primate brain. This understanding of brain structure allows for a deeper knowledge of the cellular basis of brain function and dysfunction, helping pave the way for a new generation of precision therapeutics for people with mental disorders and other disorders of the brain.
Published Self-correcting quantum computers within reach?



Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.
Published Exploring parameter shift for quantum fisher information



Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.
Published A new way to erase quantum computer errors



Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published The end of genes: Routine test reveals unique divergence in genetic code



Scientists testing a new method of sequencing single cells have unexpectedly changed our understanding of the rules of genetics. The genome of a protist has revealed a seemingly unique divergence in the DNA code signalling the end of a gene, suggesting the need for further research to better understand this group of diverse organisms.
Published New open-source method to improve decoding of single-cell data



Researchers have developed a new open-source computational method, dubbed Spectra, which improves the analysis of single-cell transcriptomic data. By guiding data analysis in a unique way, Spectra can offer new insights into the complex interplay between cells — like the interactions between cancer cells and immune cells, which are critical to improving immunotherapy treatments.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Avatars to help tailor glioblastoma therapies



Scientists have created a new zebrafish xenograft platform to screen for novel treatments for an aggressive brain tumor called glioblastoma, according to a new study.
Published Scientists develop 3D printing method that shows promise for repairing brain injuries



Researchers have produced an engineered tissue representing a simplified cerebral cortex by 3D printing human stem cells. When implanted into mouse brain slices, the structures became integrated with the host tissue. The technique may ultimately be developed into tailored repairs to treat brain injuries.
Published When cells go boom: Study reveals inflammation-causing gene carried by millions



Researchers have found that a genetic change that increases the risk of inflammation, through a process described as ‘explosive’ cell death, is carried by up to 3% of the global population.
Published How new plant cell walls change their mechanical properties after cell division



Scientists reveal new plant cell walls can have significantly different mechanical properties compared to surrounding parental cell walls, enabling cells to change their local shape and influence the growth of plant organs.
Published Examining the superconducting diode effect



Scientists have reviewed the superconducting diode effect, a quantum effect enabling dissipationless supercurrent to flow in only one direction. The SDE provides new functionalities for superconducting circuits and future ultra-low energy superconducting/hybrid devices, with potential for quantum technologies in both classical and quantum computing.
Published Preventing spread of parasitic DNA in our genomes



Researchers have identified a new enzyme called PUCH, which plays a key role in preventing the spread of parasitic DNA in our genomes. These findings may reveal new insights into how our bodies detect and fight bacteria and viruses to prevent infections.
Published A hygiene program for chromosomes



Researchers identified and characterized a new cellular compartment in vertebrate cells that might be a precursor of today's eucaryotic nucleus. The study reveals that mammalian cells recognize, cluster, sort and keep extrachromosomal DNA -- like transfected plasmid DNA and endogenous circular DNAs originating from telomeres of the chromosome -- away from chromosomal DNA. That suggests that there is a cell autonomous genome defense system.
Published A more effective experimental design for engineering a cell into a new state



A new machine-learning approach helps scientists more efficiently identify the optimal intervention to achieve a certain outcome in a complex system, such as genome regulation, requiring far fewer experimental trials than other methods.
Published Researchers studied thousands of fertility attempts hoping to improve IVF



By genetically testing nearly one thousand embryos, scientists have provided the most detailed analysis of embryo fate following human in vitro fertilization.