Showing 20 articles starting at article 381

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Mathematics: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genome editing: Reducing off-target mutations in DNA      (via sciencedaily.com)     Original source 

Researchers have developed a novel genome editing technique known as NICER, which results in significantly fewer off-target mutations than CRISPR/Cas9 editing. The technique uses a different type of enzyme that makes single-stranded 'nicks' in the DNA. Repair of these nicks is more efficient and accurate than repair of double-strand breaks caused by the current CRISPR/Cas9 editing. This technique represents a novel approach for the treatment of genetic diseases caused by heterozygous mutations.

Mathematics: General Mathematics: Modeling
Published

Are US teenagers more likely than others to exaggerate their math abilities?      (via sciencedaily.com) 

A major new study has revealed that American teenagers are more likely than any other nationality to brag about their math ability.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Genetically modified bacteria break down plastics in saltwater      (via sciencedaily.com)     Original source 

Researchers have genetically engineered a marine microorganism to break down plastic in salt water. Specifically, the modified organism can break down polyethylene terephthalate (PET), a plastic used in everything from water bottles to clothing that is a significant contributor to microplastic pollution in oceans.

Biology: Cell Biology Biology: Developmental Biology: General
Published

Using topology, Researchers advance understanding of how cells organize themselves      (via sciencedaily.com)     Original source 

R esearchers created a machine learning algorithm using computational topology that profiles shapes and spatial patterns in embryos to study how these cells organize themselves into tissue-like architectures. In a new study, they take that system to the next level, opening a path to studying how multiple types of cells assemble themselves.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Researchers discover tissue-specific protection against protein aggregation      (via sciencedaily.com)     Original source 

Researchers have identified a backup mechanism of protein quality control which prevents the toxic effects of protein aggregation in specific tissues when normal methods of molecular monitoring fail. By understanding how different tissues tackle protein build up, this research could accelerate the identification of ways to protect tissues that are vulnerable to protein build up, possibly tackling both disease-associated protein aggregates and also age-dependent aggregates that accelerate the functional decline of tissues.

Computer Science: Artificial Intelligence (AI) Computer Science: General Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

Evolution wired human brains to act like supercomputers      (via sciencedaily.com) 

Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.

Biology: Developmental Biology: Microbiology Ecology: Animals
Published

Lack of maternal care affects development, microbiome and health of wild bees      (via sciencedaily.com)     Original source 

Most wild bees are solitary, but one tiny species of carpenter bees fastidiously cares for and raises their offspring, an act that translates into huge benefits to the developing bee's microbiome, development and health, found researchers. Without maternal care the pathogen load of these developing bees ballooned -- 85 per cent of were fungi, while eight per cent were bacteria -- which can impact their microbiome, a critical component of bee health, as well as their development, immune system and gene expression.

Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

From hagfish to membrane: Modeling age-related macular degeneration      (via sciencedaily.com)     Original source 

Researchers have successfully demonstrated that hagfish slime proteins can accurately replicate membranes in the human eye. Scientists were able to properly grow retinal cells on hagfish slime proteins and prove that the protein's behavior changes as the membrane mimics stages of aging and disease.

Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Flu: Interferon-gamma from T follicular helper cells is required to create lung-resident memory B cells      (via sciencedaily.com)     Original source 

During a bout of influenza, B cells interact with other immune cells and then take different paths to defend the body. One path is the B cells that differentiate into lung-resident memory B cells, or lung-BRMs, that are critical for pulmonary immunity. These long-lived, non-circulating lung-BRMs migrate to the lungs from draining lymph nodes and reside there permanently as the first layer of defense that can quickly react to produce antibodies in a future infection.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Dormant' HIV produces RNA and proteins during anti-retroviral therapy      (via sciencedaily.com)     Original source 

HIV anti-retroviral therapy is considered a treatment and not a cure because patients usually carry a reservoir of HIV-infected cells that can re-emerge if treatment stops. These reservoirs have long been thought to be dormant, but two independent groups of researchers report that a subset of these cells spontaneously produce HIV RNA and proteins that may impact patients' HIV-specific immune responses.

Environmental: Water Geoscience: Severe Weather Mathematics: General Mathematics: Modeling
Published

New super-fast flood model has potentially life-saving benefits      (via sciencedaily.com) 

Researchers have developed a new simulation model, which can predict flooding during an ongoing disaster more quickly and accurately than currently possible.

Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Auxin signaling pathway controls root hair formation for nitrogen uptake      (via sciencedaily.com)     Original source 

Root hairs represent a low-cost strategy to enhance nutrient uptake because they can significantly increase the nutrient-acquiring surface of plant roots. While primary and lateral roots are stimulated to elongate when plants grow under mild nitrogen deficiency, the existence of such a foraging response for root hairs and its underlying regulatory mechanism remain elusive. Now, researchers have revealed a framework composed of specific molecular players meditating auxin synthesis, transport and signaling that triggers root hair elongation for nitrogen acquisition.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Nutrients drive cellular reprogramming in the intestine      (via sciencedaily.com)     Original source 

Researchers have unveiled an intriguing phenomenon of cellular reprogramming in mature adult organs, shedding light on a novel mechanism of adaptive growth. The study, which was conducted on fruit flies (Drosophila), provides further insights into dedifferentiation -- where specialized cells that have specific functions transform into less specialized, undifferentiated cells like stem cells.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

These worms have rhythm      (via sciencedaily.com)     Original source 

Researchers have developed a new imaging technique to observe active gene expression in real time. They found that four molecules work together to control the timing of each stage of the C. elegans worm's development. This timekeeping process could provide important clues about the natural rhythm of development in humans and other animals.

Computer Science: General Mathematics: General Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

What do neurons, fireflies and dancing the Nutbush have in common?      (via sciencedaily.com) 

Synchronicity is all around us, but it is poorly understood. Computer scientists have now developed new tools to understand how human and natural networks fall in and out of sync.

Biology: Biotechnology Biology: Developmental Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Researchers grow embryonic humanized kidneys inside pigs for 28 days      (via sciencedaily.com)     Original source 

Researchers have successfully created chimeric embryos containing a combination of human and pig cells. When transferred into surrogate pig mothers, the developing humanized kidneys had normal structure and tubule formation after 28 days. This is the first time that scientists have been able to grow a solid humanized organ inside another species, though previous studies have used similar methods to generate human tissues such as blood or skeletal muscle in pigs.

Biology: Biotechnology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genetic tools probe microbial dark matter      (via sciencedaily.com)     Original source 

Genetic manipulation of a puzzling, miniscule bacteria that has lived in human mouths at least since the Middle Stone Age is elucidating the genes needed for its unusual lifestyle. These Patescibacteria in the human oral microbiome reside on the surface of another, larger host microbe. Found in many water and land environments, Patescibacteria in general lack the genes required to make many molecules necessary for life, such as the amino acids that make up proteins, the fatty acids that form membranes, and the nucleotides in DNA. This has led researchers to speculate that many of them rely on other bacteria to grow. In a new study, researchers present the first glimpse into the molecular mechanisms behind their relationship with their host cells. They also share details gleaned from fluorescent, time-lapse microsopic imaging of these bacteria as they bud and send out swarms of tiny progeny, only a fraction of which are able to establish a host relationship.

Biology: Biotechnology Biology: Developmental Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Study illuminates mechanism that annotates genetic information passed from fathers to offspring      (via sciencedaily.com)     Original source 

Scientists have identified a key part of a mechanism that annotates genetic information before it is passed from fathers to their offspring. The findings shed new light on genomic imprinting, a fundamental, biological process in which a gene from one parent is switched off while the copy from the other parent remains active. Errors in imprinting are linked to a host of diseases, such as the rare disease Silver-Russell syndrome along with certain cancers and diabetes.

Biology: Biotechnology Biology: Developmental
Published

Discovery of new cell type in thymus      (via sciencedaily.com)     Original source 

Biomedical scientists have confirmed that newly discovered cells in the thymus are just like M cells, which are mostly known for their presence in the intestinal epithelium.

Biology: Biotechnology Biology: Developmental Biology: Genetics Biology: Molecular
Published

Unveiling the mechanism of 3D folding of cell sheets      (via sciencedaily.com)     Original source 

A team of researchers has revealed that the Dumpy protein, a component of extracellular matrices -- or ECM -- is the key factor in regulating the stereotypic origami-like folding of wing-cell sheets. Their findings that wing cells never divide during folding nor do they exhibit spatially distinct behaviors suggest how external cues can create consistent 3D tissue structures.