Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Mathematics: Statistics
Published Radio waves can tune up bacteria to become life-saving medicines



Scientists have found a new way to alter the DNA of bacterial cells -- a process used to make many vital medicines including insulin -- much more efficiently than standard industry techniques.
Published Double trouble at chromosome ends



New findings suggest the end-replication problem, an old standby of biology textbooks, is twice as intricate as once thought.
Published Change in gene code may explain how human ancestors lost tails



A genetic change in our ancient ancestors may partly explain why humans don't have tails like monkeys.
Published Microbial comics: RNA as a common language, presented in extracellular speech-bubbles



Decoding the conversations between microbes of hypersaline environments reveals deep insights into the origins of complex life.
Published Human stem cells coaxed to mimic the very early central nervous system



The first stem cell culture method that produces a full model of the early stages of the human central nervous system has been developed by a team of engineers and biologists.
Published Damage to cell membranes causes cell aging



Researchers have discovered that damage to the cell membrane promotes cellular senescence, or cell aging.
Published Scientists can tell where a mouse is looking and located based on its neural activity



Researchers have paired a deep learning model with experimental data to 'decode' mouse neural activity. Using the method, they can accurately determine where a mouse is located within an open environment and which direction it is facing, just by looking at its neural firing patterns. Being able to decode neural activity could provide insight into the function and behavior of individual neurons or even entire brain regions.
Published Scientists discover link between leaky gut and accelerated biological aging



A professor has demonstrated a connection between viral damage to the gut and premature biological aging.
Published New system triggers cellular waste disposal



Established treatments for cancer and other diseases often focus on inhibiting harmful enzymes to mitigate their effects. However, a more innovative approach has emerged: harnessing the cell's natural waste disposal system not just to deactivate but to entirely eradicate these proteins. Researchers have previously demonstrated the efficacy of this approach through two distinct methods. Now they unveil a third system capable of targeting and disposing of previously inaccessible proteins.
Published Toxoplasmosis: Evolution of infection machinery



Researchers have identified a protein that evolved concurrently with the emergence of cellular compartments crucial for the multiplication of the toxoplasmosis pathogen.
Published Big new idea introduced with the help of tiny plankton



A new model bridges the rules of life at the individual scale and the ecosystem level, which could open new avenues of exploration in ecology, global change biology, and ultimately ecosystem management.
Published Asexual propagation of crop plants gets closer



When the female gametes in plants become fertilized, a signal from the sperm activates cell division, leading to the formation of new plant seeds. This activation can also be deliberately triggered without fertilization, as researchers have shown. Their findings open up new avenues for the asexual propagation of crop plants.
Published Ancient retroviruses played a key role in the evolution of vertebrate brains



Researchers report that ancient viruses may be to thank for myelin -- and, by extension, our large, complex brains. The team found that a retrovirus-derived genetic element or 'retrotransposon' is essential for myelin production in mammals, amphibians, and fish. The gene sequence, which they dubbed 'RetroMyelin,' is likely a result of ancient viral infection, and comparisons of RetroMyelin in mammals, amphibians, and fish suggest that retroviral infection and genome-invasion events occurred separately in each of these groups.
Published Team creates novel rabies viral vectors for neural circuit mapping



A research team has created 20 new recombinant rabies viral vectors for neural circuit mapping that offer a range of significant advantages over existing tools, including the ability to detect microstructural changes in models of aging and Alzheimer's disease brain neurons.
Published Key genes linked to DNA damage and human disease uncovered



Scientists unveil 145 genes vital for genome health, and possible strategies to curb progression of human genomic disorders.
Published Pesticides to help protect seeds can adversely affect earthworms' health



While pesticides protect crops from hungry animals, pesky insects, or even microbial infections, they also impact other vital organisms, including bees and earthworms. And today, research reveals that worms are affected by the relatively small amounts of chemicals that can leach out of pesticide-treated seeds. Exposure to nonlethal amounts of these insecticides and fungicides resulted in poor weight gain and mitochondrial DNA (mtDNA) damage in the worms.
Published Why do flies fall in love? Researchers tease out the signals behind fruit fly courtship songs



Researchers have pinpointed the group of neurons in the nerve cord -- a structure analogous to our spinal cord -- that produce and pattern the fly's two major courtship songs. They've also measured neuronal activity in these cells while flies were singing to understand how these neurons control each type of song.
Published Nutrients direct intestinal stem cell function and affect aging



The capacity of intestinal stem cells to maintain cellular balance in the gut decreases upon aging. Researchers have discovered a new mechanism of action between the nutrient adaptation of intestinal stem cells and aging. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.
Published Researchers show classical computers can keep up with, and surpass, their quantum counterparts



A team of scientists has devised means for classical computing to mimic a quantum computing with far fewer resources than previously thought. The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.
Published New research uncovers biological drivers of heart disease risk



Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact.