Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Mathematics: Statistics
Published Engineered plants produce sex perfume to trick pests and replace pesticides



Tobacco plants have been engineered to manufacture an alluring perfume of insect sex pheromones, which could be used to confuse would-be pests looking for love and reduce the need for harmful pesticides.
Published Here's how a worm's embryonic cells changed its development potential



Researchers have spotted how specific proteins within the chromosomes of roundworms enable their offspring to produce specialized cells generations later, a startling finding that upends classical thinking that hereditary information for cell differentiation is mostly ingrained within DNA and other genetic factors.
Published Simple but revolutionary modular organoids



A team has developed an ingenious device, using layers of hydrogels in a cube-like structure, that allows researchers to construct complex 3D organoids without using elaborate techniques. The group also recently demonstrated the ability to use the device to build organoids that faithfully reproduce the asymmetric genetic expression that characterizes the actual development of organisms.
Published Researchers clear the way for well-rounded view of cellular defects



New research investigates how cells divide, particularly in the fibrous environment of living tissue. Cells are typically studied in a flat environment, and the difference between flat and fibrous landscapes opens new windows into the behavior of cells and the diseases that impact them.
Published Researchers create embryo-like structures from monkey embryonic stem cells



Human embryo development and early organ formation remain largely unexplored due to ethical issues surrounding the use of embryos for research as well as limited availability of materials to study. Investigators now report on the creation of embryo-like structures from monkey embryonic stem cells. The investigators also transferred these embryo-like structures into the uteruses of female monkeys and determined that the structures were able to implant and elicit a hormonal response similar to pregnancy.
Published A miniature heart in a petri dish: Organoid emulates development of the human heart



A team has induced stem cells to emulate the development of the human heart. The result is a sort of 'mini-heart' known as an organoid. It will permit the study of the earliest development phase of our heart and facilitate research on diseases.
Published Study to decode microbe-gut signaling suggests potential new treatment for IBD



Fresh insights into how our bodies interact with the microbes living in our guts suggest that a two-drug combination may offer a new way to treat inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Published Microrobot technology: Externally connecting in vivo neural networks


Researchers have developed a technology for delivering a microrobot to a target point of a hippocampus in an in-vitro environment, connecting neural networks, and measuring neural signals. The findings are expected to contribute to neural network research and the verification and analysis of cell therapy products.
Published Boosting the body's anti-viral immune response may eliminate aging cells



Aging cells express a protein that is produced by human cytomegalovirus and is targeted by certain immune cells in the body. Harnessing the immune response to this protein could have multiple health benefits during aging.
Published T cells in human blood secrete a substance that affects blood pressure and inflammation



Acetylcholine regulates blood flow, but the source of blood acetylcholine has been unclear. Now, researchers have discovered that certain T cells in human blood can produce acetylcholine, which may help regulate blood pressure and inflammation. The study also demonstrates a possible association between these immune cells in seriously ill patients and the risk of death.
Published Components of cytoskeleton strengthen effect of sex hormones


Researchers discover that actin acts in the cell nucleus and is partly responsible for the expression of male sexual characteristics.
Published Epigenetic fingerprint as proof of origin for chicken, shrimp and salmon


Free-range organic chicken or factory farming? Scientists have developed a new detection method that can reveal such differences in husbandry. The so-called epigenetic method is based on the analysis of the characteristic patterns of chemical markers on the genome of the animals.
Published What should we call evolution driven by genetic engineering? Genetic welding, says researcher


With CRISPR-Cas9 technology, humans can now rapidly change the evolutionary course of animals or plants by inserting genes that can easily spread through entire populations. An evolutionary geneticist proposes that we call this evolutionary meddling 'genetic welding.' He argues that we must scientifically and ethically scrutinize the potential consequences of genetic welding before we put it into practice.
Published The powerhouse of the future: Artificial cells


Researchers identify the most promising advancements and greatest challenges of artificial mitochondria and chloroplasts. The team describes the components required to construct synthetic mitochondria and chloroplasts and identifies proteins as the most important aspects for molecular rotary machinery, proton transport, and ATP production. The authors believe it is important to create artificial cells with biologically realistic energy-generation methods that mimic natural processes; replicating the entire cell could lead to future biomaterials.
Published Ending THC use may reverse its impacts on male fertility, research shows



A previous study confirmed that chronic use of cannabis may greatly impact male fertility and reproductive outcomes in nonhuman primates -- but it was unclear whether the effects are permanent. Now, new research has confirmed that discontinuing use of THC can at least partly reverse these effects, according to a new study.
Published Meet the hybrid micro-robot: The tiny robot that is able to navigate in a physiological environment and capture targeted damaged cells


Researchers have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms -- electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis.
Published Harnessing power of immune system may lessen reliance on antibiotics for infections like TB


Researchers have found that the body's process of removing old and damaged cell parts, is also an essential part of tackling infections that take hold within our cells, like TB. If this natural process can be harnessed with new treatments, it could present an alternative to, or improve use of antibiotics, especially where bacteria have become resistant to existing drugs.
Published Newly discovered cell in fruit flies is essential for touch sensation


Researchers have uncovered a key role for a new type of cell in touch detection in the skin of the fruit fly.
Published Researchers discover a way to fight the aging process and cancer development


Damage in the human genome can be repaired. But this works better in germ cells, sperm and eggs, than in normal body cells. Responsible for this is the DREAM protein complex, which prevents the activation of all available repair mechanisms. A research team has now shown that normal body cells can also be repaired better once this complex has been deactivated. In the long run, the scientists hope to develop better therapies to prevent cancer and aging-associated diseases.
Published Memory B cell marker predicts long-lived antibody response to flu vaccine


Memory B cells play a critical role to provide long-term immunity after a vaccination or infection. Researchers have now described a distinct and novel subset of memory B cells that predict long-lived antibody responses to influenza vaccination in humans. These effector memory B cells appear to be poised for a rapid serum antibody response upon secondary challenge one year later.