Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Environmental: General
Published

Pesticides to help protect seeds can adversely affect earthworms' health      (via sciencedaily.com)     Original source 

While pesticides protect crops from hungry animals, pesky insects, or even microbial infections, they also impact other vital organisms, including bees and earthworms. And today, research reveals that worms are affected by the relatively small amounts of chemicals that can leach out of pesticide-treated seeds. Exposure to nonlethal amounts of these insecticides and fungicides resulted in poor weight gain and mitochondrial DNA (mtDNA) damage in the worms.

Biology: Developmental Biology: Molecular
Published

Why do flies fall in love? Researchers tease out the signals behind fruit fly courtship songs      (via sciencedaily.com)     Original source 

Researchers have pinpointed the group of neurons in the nerve cord -- a structure analogous to our spinal cord -- that produce and pattern the fly's two major courtship songs. They've also measured neuronal activity in these cells while flies were singing to understand how these neurons control each type of song.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Nutrients direct intestinal stem cell function and affect aging      (via sciencedaily.com)     Original source 

The capacity of intestinal stem cells to maintain cellular balance in the gut decreases upon aging. Researchers have discovered a new mechanism of action between the nutrient adaptation of intestinal stem cells and aging. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

New research uncovers biological drivers of heart disease risk      (via sciencedaily.com)     Original source 

Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Researchers discover key to molecular mystery of how plants respond to changing conditions      (via sciencedaily.com)     Original source 

A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Extra fingers and hearts: Pinpointing changes to our genetic instructions that disrupt development      (via sciencedaily.com)     Original source 

Scientists can now predict which single-letter changes to the DNA within our genomes will alter genetic instructions and disrupt development, leading to changes such as the growth of extra digits and hearts. Such knowledge opens the door to predictions of which enhancer variants underlie disease in order to harness the full potential of our genomes for better human health.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Computer Science: General
Published

Computer-engineered DNA to study cell identities      (via sciencedaily.com)     Original source 

A new computer program allows scientists to design synthetic DNA segments that indicate, in real time, the state of cells. It will be used to screen for anti-cancer or viral infections drugs, or to improve gene and cell-based immunotherapies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mechanism discovered that protects tissue after faulty gene expression      (via sciencedaily.com)     Original source 

A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

The arrangement of bacteria in biofilms affects their sensitivity to antibiotics      (via sciencedaily.com)     Original source 

Many bacteria form an antibiotic-resistant slime. Research detailing that slime's structure could help lead to new treatments.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

LSH genes associated with defining the shapes of stems, flowers and leaves required for N-fixing root nodules      (via sciencedaily.com)     Original source 

The developmental regulators that confer the identity of N-fixing root nodules belong to a transcription factor family (LSH) more commonly associated with defining the shapes of stems, flowers and leaves.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells      (via sciencedaily.com)     Original source 

New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Genomic time machine' reveals secrets of our DNA      (via sciencedaily.com)     Original source 

Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Researchers pinpoint most likely source of HIV rebound infection      (via sciencedaily.com)     Original source 

Antiretroviral therapy (ART) does an excellent job at suppressing HIV to undetectable levels in the blood. However, small amounts of latent virus hide throughout the body, and when treatment is stopped, it opens the door for the virus to rebound. Researchers identified which tissues SIV, the nonhuman primate version of HIV, reemerges from first, just seven days after ART is stopped.

Biology: Biochemistry Biology: Developmental Biology: General Biology: Microbiology Ecology: Endangered Species
Published

World's first successful embryo transfer in rhinos paves the way for saving the northern white rhinos from extinction      (via sciencedaily.com)     Original source 

Scientists have succeeded in achieving the world's first pregnancy of a rhinoceros after an embryo transfer. The southern white rhino embryo was produced in vitro from collected egg cells and sperm and transferred into a southern white rhino surrogate mother at the Ol Pejeta Conservancy in Kenya on September 24, 2023. The BioRescue team confirmed a pregnancy of 70 days with a well-developed 6.4 cm long male embryo. The successful embryo transfer and pregnancy are a proof of concept and allow to now safely move to the transfer of northern white rhino embryos -- a cornerstone in the mission to save the northern white rhino from extinction.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

DNA construction led to unexpected discovery of important cell function      (via sciencedaily.com)     Original source 

Researchers have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases.