Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Geoscience: Geomagnetic Storms
Published A miniature heart in a petri dish: Organoid emulates development of the human heart



A team has induced stem cells to emulate the development of the human heart. The result is a sort of 'mini-heart' known as an organoid. It will permit the study of the earliest development phase of our heart and facilitate research on diseases.
Published Study to decode microbe-gut signaling suggests potential new treatment for IBD



Fresh insights into how our bodies interact with the microbes living in our guts suggest that a two-drug combination may offer a new way to treat inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Published Microrobot technology: Externally connecting in vivo neural networks


Researchers have developed a technology for delivering a microrobot to a target point of a hippocampus in an in-vitro environment, connecting neural networks, and measuring neural signals. The findings are expected to contribute to neural network research and the verification and analysis of cell therapy products.
Published Boosting the body's anti-viral immune response may eliminate aging cells



Aging cells express a protein that is produced by human cytomegalovirus and is targeted by certain immune cells in the body. Harnessing the immune response to this protein could have multiple health benefits during aging.
Published T cells in human blood secrete a substance that affects blood pressure and inflammation



Acetylcholine regulates blood flow, but the source of blood acetylcholine has been unclear. Now, researchers have discovered that certain T cells in human blood can produce acetylcholine, which may help regulate blood pressure and inflammation. The study also demonstrates a possible association between these immune cells in seriously ill patients and the risk of death.
Published Components of cytoskeleton strengthen effect of sex hormones


Researchers discover that actin acts in the cell nucleus and is partly responsible for the expression of male sexual characteristics.
Published Epigenetic fingerprint as proof of origin for chicken, shrimp and salmon


Free-range organic chicken or factory farming? Scientists have developed a new detection method that can reveal such differences in husbandry. The so-called epigenetic method is based on the analysis of the characteristic patterns of chemical markers on the genome of the animals.
Published What should we call evolution driven by genetic engineering? Genetic welding, says researcher


With CRISPR-Cas9 technology, humans can now rapidly change the evolutionary course of animals or plants by inserting genes that can easily spread through entire populations. An evolutionary geneticist proposes that we call this evolutionary meddling 'genetic welding.' He argues that we must scientifically and ethically scrutinize the potential consequences of genetic welding before we put it into practice.
Published The powerhouse of the future: Artificial cells


Researchers identify the most promising advancements and greatest challenges of artificial mitochondria and chloroplasts. The team describes the components required to construct synthetic mitochondria and chloroplasts and identifies proteins as the most important aspects for molecular rotary machinery, proton transport, and ATP production. The authors believe it is important to create artificial cells with biologically realistic energy-generation methods that mimic natural processes; replicating the entire cell could lead to future biomaterials.
Published Ending THC use may reverse its impacts on male fertility, research shows



A previous study confirmed that chronic use of cannabis may greatly impact male fertility and reproductive outcomes in nonhuman primates -- but it was unclear whether the effects are permanent. Now, new research has confirmed that discontinuing use of THC can at least partly reverse these effects, according to a new study.
Published Meet the hybrid micro-robot: The tiny robot that is able to navigate in a physiological environment and capture targeted damaged cells


Researchers have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms -- electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis.
Published Harnessing power of immune system may lessen reliance on antibiotics for infections like TB


Researchers have found that the body's process of removing old and damaged cell parts, is also an essential part of tackling infections that take hold within our cells, like TB. If this natural process can be harnessed with new treatments, it could present an alternative to, or improve use of antibiotics, especially where bacteria have become resistant to existing drugs.
Published Newly discovered cell in fruit flies is essential for touch sensation


Researchers have uncovered a key role for a new type of cell in touch detection in the skin of the fruit fly.
Published Researchers discover a way to fight the aging process and cancer development


Damage in the human genome can be repaired. But this works better in germ cells, sperm and eggs, than in normal body cells. Responsible for this is the DREAM protein complex, which prevents the activation of all available repair mechanisms. A research team has now shown that normal body cells can also be repaired better once this complex has been deactivated. In the long run, the scientists hope to develop better therapies to prevent cancer and aging-associated diseases.
Published Memory B cell marker predicts long-lived antibody response to flu vaccine


Memory B cells play a critical role to provide long-term immunity after a vaccination or infection. Researchers have now described a distinct and novel subset of memory B cells that predict long-lived antibody responses to influenza vaccination in humans. These effector memory B cells appear to be poised for a rapid serum antibody response upon secondary challenge one year later.
Published To ward off aging, stem cells must take out the trash


Researchers find stem cells use a surprising system for discarding misfolded proteins. This unique pathway could be the key to maintaining long-term health and preventing age-related blood and immune disorders.
Published Discovery of an unexpected function of blood immune cells: Their ability to proliferate


The ability of a cell to divide, to proliferate, is essential for life and gives rise to the formation of complex organisms from a single cell. It also allows the replacement of used cells from a limited number of 'stem' cells, which then proliferate and specialize. In cancer, however, cell proliferation is no longer controlled and becomes chaotic. Researchers have discovered that, in a healthy individual, certain blood immune cells, the monocytes, also have this ability to proliferate, with the aim to replace tissue macrophages, which are essential for the proper functioning of our body.
Published Compressive stress shapes the symmetry of Arabidopsis root vascular tissue


A cytokinin-mediated, proliferation-based mechanism is involved in the generation and maintenance of cell-type specific tissue boundaries during vascular development in Arabidopsis roots. Specifically, the HANABA-TARANU transcription factor forms a feed-forward loop to cytokinin signaling, which in turn regulates the position and frequency of cell proliferation of proto-vascular cells such that mechanical stress of the surrounding tissues guides growth in an apical-oriented manor, maintaining cell patterning throughout the tissue section.
Published Where the HI-Virus sleeps in the brain


The human immunodeficiency virus HIV-1 is able to infect various tissues in humans. Once inside the cells, the virus integrates its genome into the cellular genome and establishes persistent infections. The role of the structure and organization of the host genome in HIV-1 infection is not well understood. Using a cell culture model based on brain immune microglia cells, an international research team has now defined the insertion patterns of HIV-1 in the genome of microglia cells.
Published Cellular waste removal differs according to cell type


'Miniature shredders' are at work in each cell, disassembling and recycling cell components that are defective or no longer required. The exact structure of these shredders differs from cell type to cell type, a study now shows. For example, cancer cells have a special variant that can supply them particularly effectively with building blocks for their energy metabolism.