Showing 20 articles starting at article 1061
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Geoscience: Geography
Published Enhanced chemical weathering: A solution to the climate crisis?



Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published Historic red tide event of 2020 fueled by plankton super swimmers



A major red tide event occurred in waters off Southern California in the spring of 2020, resulting in dazzling displays of bioluminescence along the coast. Now, for the first time, a study has pinpointed how the plankton species Lingulodinium polyedra -- a dinoflagellate -- was able to create such an exceptionally dense bloom. The answer lies in dinoflagellates' remarkable ability to swim, which lends them a competitive advantage over other species of phytoplankton.
Published New approach to fighting malaria



Findings can open up new avenues for targeted approaches toward therapeutic strategies against the malaria-causing P. falciparum that are aimed at stopping the parasite's life cycle progression and its sexual differentiation, thus blocking the transmission of the parasite into mosquitoes.
Published Past abrupt changes in North Atlantic Overturning have impacted the climate system across the globe



Abrupt climate changes have affected rainfall patterns worldwide in the past, especially in the tropical monsoon region, a new study shows. An international team of scientists used dripstones from globally distributed caves together with model simulations to analyze the global impacts of rapid Northern-Hemisphere temperature increases, the widely studied Dansgaard-Oeschger events, that repeatedly occurred during the last ice age. The comparison of stalagmite and model data shows in unprecedented detail how these abrupt changes and the associated modifications of the Atlantic overturning circulation, AMOC for short, have affected global atmospheric circulation.
Published Scientists invent new way to sort cells by type using light


Researchers have developed and demonstrated a new method for high-throughput single-cell sorting that uses stimulated Raman spectroscopy rather than the traditional approach of fluorescence-activated cell sorting. The new approach could offer a label-free, nondestructive way to sort cells for a variety of applications, including microbiology, cancer detection and cell therapy.
Published Unlocking the secrets of cell antennas



The NSL (non-specific lethal) complex regulates thousands of genes in fruit flies and mammals. Silencing the NSL genes leads to the death of the organism, which gave the complex its curious name. Researchers have now discovered that the genes regulated by the NSL complex also include genes of the intraciliary transport system. This enables different cell types to form cilia on their surface, which are important for cell communication. The study shows that these genes are 'switched on' by the NSL complex, regardless of whether a particular cell has cilia or not. The researchers found that this class of cilia-associated genes is crucial for the function of podocytes. This is a highly specialized cell type of the kidney that, paradoxically, does not have cilia. These findings have important implications for ciliopathies and kidney disease.
Published Epigenetic mechanism that causes bitter taste distortion discovered



A bitter taste in the mouth is often a symptom or side effect of illness, which may be the result of how the body reacts to pathogens. A new study sheds light on the mechanisms involved in the complex interplay between taste perception and immune function. Their work also highlights the potential of a sequencing tool for investigating epigenetic mechanisms that affect taste-cell gene expression.
Published Researchers describe rebuilding, regenerating lung cells



Researchers have discovered a novel approach for engrafting engineered cells into injured lung tissue. These findings may lead to new ways for treating lung diseases, such as emphysema, pulmonary fibrosis and COVID-19. The two studies describe the methodologies for engineering lung stem cells and transplanting them into injured experimental lungs without immunosuppression.
Published The 'treadmill conveyor belt' ensuring proper cell division



Researchers have discovered how proteins work in tandem to regulate 'treadmilling', a mechanism used by the network of microtubules inside cells to ensure proper cell division.
Published Noncoding DNA explains a majority of the heritability of dairy cattle traits, like milk production and fertility



Regulatory genes -- genes that control how other genes are used -- are responsible for 69% of the heritability of dairy cattle traits such as milk production and fertility, according to a new study. This contribution is 44% more than expected and much higher than previous studies of regulatory genes in humans. The findings, reported by a team of animal and human geneticists, could improve the efficiency of agricultural breeding programs. The study also helps solve the longstanding mystery of why mammalian genomes contain so much noncoding DNA.
Published Cracking the code that relates brain and behavior in a simple animal



Researchers model and map how neurons across the tiny brain of a C. elegans worm encode its behaviors, revealing many new insights about the robustness and flexibility of its nervous system.
Published 'Viral relicts' in the genome could fuel neurodegeneration



Genetic remnants of viruses that are naturally present in the human genome could affect the development of neurodegenerative diseases. Researchers come to this conclusion on the basis of studies on cell cultures.
Published Certain sugars affect brain 'plasticity,' helping with learning, memory, recovery



Can you recognize an old friend, but forget what you had for breakfast yesterday? Our brains constantly rearrange their circuitry to retain information, but the molecular basis behind this process isn't well understood. New research suggests that complex sugars called glycosaminoglycans might play a major role in the 'plasticity' of the brains of mice and could be used to repair neural connections after injury.
Published Building muscle in the lab



A new method allows large quantities of muscle stem cells to be safely obtained in cell culture. This provides a potential for treating patients with muscle diseases -- and for those who would like to eat meat, but don't want to kill animals.
Published Scientists discover external protein network can help stabilize neural connections



The Noelin family of secreted proteins bind to the external portion of AMPA glutamate receptors and stabilize them on the neuronal cellular membrane, a process necessary for transmission of full-strength signals between neurons, according to a new study.
Published New algorithm captures complex 3D light scattering information from live specimens


Researchers have developed a new algorithm for recovering the 3D refractive index distribution of biological samples that exhibit multiple types of light scattering.
Published Distribution of genetic information during bacterial cell division


A mathematical model provides new insights into the distribution of genetic information during bacterial cell division
Published Global consortium creates large-scale, cross-species database and universal 'clock' to estimate age in all mammalian tissues



An international research team details changes in DNA that researchers found are shared by humans and other mammals throughout history and are associated with life span and numerous other traits.
Published Researchers engineer bacteria that can detect tumor DNA



Creating new technologically advanced sensors, scientists have engineered bacteria that detect the presence of tumor DNA in live organisms. Their innovation could pave the way to new biosensors capable of identifying various infections, cancers and other diseases.
Published Scientists reverse hearing loss in mice



New research has successfully reversed hearing loss in mice. Scientists used a genetic approach to fix deafness in mice, restoring their hearing abilities in low and middle frequency ranges.