Showing 20 articles starting at article 841

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Geoscience: Geochemistry

Return to the site home page

Biology: Biochemistry Biology: Botany Ecology: Endangered Species Ecology: Nature Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New research suggests plants might be able to absorb more CO2 from human activities than previously expected      (via sciencedaily.com)     Original source 

New research  paints an uncharacteristically upbeat picture for the planet. This is because more realistic ecological modelling suggests the world's plants may be able to take up more atmospheric CO2 from human activities than previously predicted.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Putting an end to plastic separation anxiety      (via sciencedaily.com)     Original source 

Bio-based plastics often end up in recycling streams because they look and feel like conventional plastic, but the contamination of these compostable products makes it much harder to generate functional material out of recycled plastic. Scientists have now developed a biology-driven process to convert these mixtures into a new biodegradable material that can be used to make fresh products. The scientists believe the process could also enable a new field of biomanufacturing wherein valuable chemicals and even medicines are made from microbes feeding off of plastic waste.

Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Shedding light on unique conduction mechanisms in a new type of perovskite oxide      (via sciencedaily.com)     Original source 

The remarkable proton and oxide-ion (dual-ion) conductivities of hexagonal perovskite-related oxide Ba7Nb3.8Mo1.2O20.1 are promising for next-generation electrochemical devices. The unique ion-transport mechanisms they unveiled will hopefully pave the way for better dual-ion conductors, which could play an essential role in tomorrow's clean energy technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Heart repair via neuroimmune crosstalk      (via sciencedaily.com)     Original source 

Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.

Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography Paleontology: Fossils
Published

Research in Lake Superior reveals how sulfur might have cycled in Earth's ancient oceans      (via sciencedaily.com)     Original source 

A scientists has sulfur on her mind. The yellow element is a vital macronutrient, and she's trying to understand how it cycles through the environment. Specifically, she's curious about the sulfur cycle in Earth's ancient ocean, some 3 billion years ago.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genomic tug of war could boost cancer therapy      (via sciencedaily.com)     Original source 

Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cell identity is preserved when cells divide      (via sciencedaily.com)     Original source 

A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation.  Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Much more than waste: Tiny vesicles exchange genetic information between cells in the sea      (via sciencedaily.com)     Original source 

Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Pushing the boundaries of eco-friendly chemical production      (via sciencedaily.com)     Original source 

A team of pioneering researchers has made a significant leap forward in the complex world of molecular chemistry. Their focus? Azaarenes, unique molecular puzzle pieces crucial to many everyday products, from eco-friendly agrochemicals to essential medicines. The team developed an innovative way to modify these molecules using light-powered enzymes -- a groundbreaking discovery that holds promise for new industrially relevant chemical reactions and sustainable energy solutions.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Ecology: Animals Geoscience: Geochemistry
Published

More than meows: How bacteria help cats communicate      (via sciencedaily.com)     Original source 

Many mammals, from domestic cats and dogs to giant pandas, use scent to communicate with each other. A new study shows how domestic cats send signals to each other using odors derived from families of bacteria living in their anal glands. 

Biology: Microbiology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microbes could help reduce the need for chemical fertilizers      (via sciencedaily.com)     Original source 

A new metal-organic coating protects bacterial cells from damage without impeding their growth or function. The coated bacteria, which produce ammonia, could make it much easier for farmers to deploy microbes as fertilizers.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Water splitting reaction for green hydrogen gas production improved      (via sciencedaily.com)     Original source 

Electrochemical catalysts used in water splitting often show poor performance due to low electrical conductance of (oxy)hydroxide species produced in situ. To overcome this challenge, researchers have now designed an electrode with Schottky Junction formed at the interface of metallic Ni-W5N4 and semiconducting NiFeOOH. The proposed electrode shows excellent catalytic activity and can facilitate industrial seawater splitting continuously for 10 days.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Geoscience: Geochemistry
Published

Unexpected discovery opens bioengineering opportunities for human and plant health      (via sciencedaily.com)     Original source 

An unexpected genetic discovery in wheat has led to opportunities for metabolic engineering of versatile compounds with potential to improve its nutritional qualities and resilience to disease.

Chemistry: General Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Climate engineering could slow Antarctic ice loss, study suggests      (via sciencedaily.com)     Original source 

A study reports that scattering sunlight-reflecting particles in the atmosphere -- a theoretical form of climate engineering known as 'stratospheric aerosol injection' -- has potential to slow rapid ice melt in Western Antarctica.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel C. diff structures are required for infection, offer new therapeutic targets      (via sciencedaily.com)     Original source 

Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles. 

Geoscience: Earth Science Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

'Bouncing' comets could deliver building blocks for life to exoplanets      (via sciencedaily.com)     Original source 

How did the molecular building blocks for life end up on Earth? One long-standing theory is that they could have been delivered by comets. Now, researchers have shown how comets could deposit similar building blocks to other planets in the galaxy.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Converting PFAS 'forever chemicals' into valuable compounds      (via sciencedaily.com)     Original source 

Researchers have successfully synthesized ligands called fluorinated N-heterocyclic carbenes (NHCs) from environmentally harmful perfluoroalkenes, a type of synthetic chemicals also referred to as PFAS. These NHCs are valuable for stabilizing unstable molecules and enhancing catalytic efficiency. Through further structural modification, these NHCs are expected to find applications in a wide range of substances, including catalysts and light-emitting materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New water treatment method can generate green energy      (via sciencedaily.com)     Original source 

Researchers have designed micromotors that move around on their own to purify wastewater. The process creates ammonia, which can serve as a green energy source. Now, an AI method will be used to tune the motors to achieve the best possible results.

Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Paleontology: General
Published

Study sheds light on how Earth cycles fossil-carbon      (via sciencedaily.com)     Original source 

Researches used rhenium as a proxy for fossil carbon in order to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and found that high rates of carbon breakdown persist across the different geographical profiles of a river basin.

Biology: Botany Ecology: Endangered Species Ecology: Nature Geoscience: Geochemistry
Published

Research provides crucial insights into moss growth under elevated CO2 levels that may benefit climate change models      (via sciencedaily.com)     Original source 

Approximately 12,000 species of mosses exist and cover close to four million square miles of earth, equivalent to the size of Canada, and are ecologically and evolutionarily important. Mosses play an essential role in rainwater retention, decreasing plant pathogens and increasing carbon sequestration in soil, thus improving the overall soil health. Mosses also protect long-term carbon storage systems, such as bogs and permafrost.