Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Early Humans, Biology: Developmental
Published Machine learning method reveals chromosome locations in individual cell nucleus



Researchers have made a significant advancement toward understanding how the human genome is organized inside a single cell. This knowledge is crucial for analyzing how DNA structure influences gene expression and disease processes.
Published Different means to the same end: How a worm protects its chromosomes



Researchers have discovered that a worm commonly used in the study of biology uses a set of proteins unlike those seen in other studied organisms to protect the ends of its DNA.
Published Scientists grow 'mini kidneys,' revealing new insights into metabolic defects and potential therapy for polycystic kidney disease



Scientists have successfully grown 'mini kidneys' in the lab and grafted them into live mice, revealing new insights into the metabolic defects and a potential therapy for polycystic kidney disease.
Published Toothed whale echolocation organs evolved from jaw muscles



Genetic analysis finds evidence suggesting that acoustic fat bodies in the heads of toothed whales were once the muscles and bone marrow of the jaw.
Published Can language models read the genome? This one decoded mRNA to make better vaccines



Researchers developed a foundational language model to decode mRNA sequences and optimize those sequences for vaccine development. The tool shows broader promise as a means for studying molecular biology.
Published New tools reveal how genes work and cells organize



Researchers have discovered how certain proteins can attach to special structures in RNA, called G-quadruplexes. Additionally, they have developed computational tools capable of predicting these protein-RNA interactions. The newfound ability to predict these interactions can help future work in understanding molecular pathways in the cell and pave the way for developing drugs targeting these RNA G-quadruplex binding proteins, that are found to be involved in disease such as cancer.
Published When did the chicken cross the road? New evidence from Central Asia



An international team of scholars present the earliest clear archaeological and biomolecular evidence for the raising of chickens for egg production, based on material from 12 archaeological sites spanning one and a half millennia. The research indicates that the domestic chicken, now a staple in diets around the world, is not as ancient as previously thought.
Published We've had bird evolution all wrong



Genomic anamolies dating back to the time of the dinosaurs misled scientists about the evolutionary history of birds.
Published When inequality is more than 'skin-deep': Social status leaves traces in the epigenome of spotted hyenas in Tanzania



A research consortium provides evidence that social behavior and social status are reflected at the molecular level of gene activation (epigenome) in juvenile and adult free-ranging spotted hyenas. They analyzed non-invasively collected gut epithelium samples from both high-ranking and low-ranking female hyenas and showed that rank differences were associated with epigenetic signatures of social inequality, i.e., the pattern of activation or switching off of genes that regulate important physiological processes such as energy conversion and immune response in several genome regions.
Published Cell division quality control 'stopwatch' uncovered



Biologists have uncovered a quality control timing mechanism tied to cell division. The 'stopwatch' function keeps track of mitosis and acts as a protective measure when the process takes too long, preventing the formation of cancerous cells.
Published DNA study IDs descendants of George Washington from unmarked remains, findings to aid service member IDs going back to World War II



New DNA sequencing technologies have identified the historical remains of George Washington's grandnephews, Samuel Walter Washington and George Steptoe Washington Jr., and their mother, Lucy Payne Washington, from unmarked, fragmentary bones left at the Harewood family cemetery in Charles Town, West Virginia, in the mid-1800s.
Published Connecting the dots to shape growth forces



Branching patterns are prevalent in our natural environment and the human body, such as in the lungs and kidneys. For example, specific genes that express growth factor proteins are known to influence the development of the lungs' complex branches. Researchers have unveiled a regulatory system linking signal, force, and shape in mouse lung structure development. The team recognized that the signal protein ERK plays an active role in causing growing lung tissue to curve.
Published Old immune systems revitalized in mouse study, improving vaccine response



Those with aging immune systems struggle to fight off novel viruses and respond weakly to vaccination. Researchers were able to revitalize the immune system in mice.
Published GPT-4 for identifying cell types in single cells matches and sometimes outperforms expert methods



GPT-4 can accurately interpret types of cells important for the analysis of single-cell RNA sequencing -- a sequencing process fundamental to interpreting cell types -- with high consistency compared to that of time-consuming manual annotation by human experts of gene information.
Published Persian plateau unveiled as crucial hub for early human migration out of Africa



A new study combining genetic, palaeoecological, and archaeological evidence has unveiled the Persian Plateau as a pivotal geographic location serving as a hub for Homo sapiens during the early stages of their migration out of Africa. It highlights the period between 70,000 to 45,000 years ago when human populations did not uniformly spread across Eurasia, leaving a gap in our understanding of their whereabouts during this time frame.
Published As we age, our cells are less likely to express longer genes



Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.
Published Research finds a direct communication path between the lungs and the brain



New research finds a direct communication path between the lungs and the brain which may change the way we treat respiratory infections and chronic conditions. The lungs are using the same sensors and neurons in the pain pathway to let the brain know there's an infection. The brain then prompts the symptoms associated with sickness. Findings indicate we may have to treat the nervous system as well as the infection.
Published Decoding the Easter Bunny -- an eastern Finnish brown hare to represent the standard for the species' genome



Biologists have published a chromosomally assembled reference genome for the European brown hare. The genome consists of 2.9 billion base pairs, which form 23 autosomal chromosomes, and X and Y sex chromosomes. The timing of the genome release is very appropriate as the brown hare also represents the original Easter Bunny familiar from European folklore.
Published Genes identified that allow bacteria to thrive despite toxic heavy metal in soil



Some soil bacteria can acquire sets of genes that enable them to pump the heavy metal nickel out of their systems, a study has found. This enables the bacteria to not only thrive in otherwise toxic soils but help plants grow there as well. A research team pinpointed a set of genes in wild soil bacteria that allows them to do this in serpentine soils which have naturally high concentrations of toxic nickel. The genetic discovery could help inform future bioremediation efforts that seek to return plants to polluted soils.
Published How cells are ahead of the curve



The curvature of a surface determines the migration behavior of biological cells. They preferentially move along valleys or grooves while avoiding ridges. These findings gave rise to a model predicting cellular behavior. Such universal principles now allow a better understanding of the migration of immune and cancer cells, paving the way for new treatment options.