Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Chemistry: General

Return to the site home page

Chemistry: General Environmental: Water Geoscience: Geochemistry
Published

New study confirms forever chemicals are absorbed through human skin      (via sciencedaily.com)     Original source 

A study of 17 commonly used synthetic 'forever chemicals' has shown that these toxic substances can readily be absorbed through human skin.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cells boost gene expression      (via sciencedaily.com)     Original source 

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Novel catalysts for improved methanol production using carbon dioxide dehydrogenation      (via sciencedaily.com)     Original source 

Encapsulating copper nanoparticles within hydrophobic porous silicate crystals has been shown to significantly enhance the catalytic activity of copper-zinc oxide catalysts used in methanol synthesis via CO2 hydrogenation. The innovative encapsulation structure effectively inhibits the thermal aggregation of copper particles, leading to enhanced hydrogenation activity and increased methanol production. This breakthrough paves the way for more efficient methanol synthesis from CO2.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Membrane protein analogues could accelerate drug discovery      (via sciencedaily.com)     Original source 

Researchers have created a deep learning pipeline for designing soluble analogues of key protein structures used in pharmaceutical development, sidestepping the prohibitive cost of extracting these proteins from cell membranes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

How to make aging a 'fairer game' for all wormkind      (via sciencedaily.com)     Original source 

Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.

Chemistry: Biochemistry Chemistry: General
Published

Scientists devise algorithm to engineer improved enzymes      (via sciencedaily.com)     Original source 

Scientists have prototyped a new method for 'rationally engineering' enzymes to deliver improved performance. They have devised an algorithm, which takes into account an enzyme's evolutionary history, to flag where mutations could be introduced with a high likelihood of delivering functional improvements. Their work could have significant, wide-ranging impacts across a suite of industries, from food production to human health.

Chemistry: Biochemistry Chemistry: General Environmental: Water Geoscience: Geochemistry Geoscience: Oceanography
Published

Much of the Nord Stream gas remained in the sea      (via sciencedaily.com)     Original source 

Much of the methane released into the southern Baltic Sea from the Nord Stream gas pipeline has remained in the water. This is shown by measurements taken by researchers from the University of Gothenburg.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Mirror-image chemicals may revolutionize drug delivery      (via sciencedaily.com)     Original source 

More than 130 years after cyclodextrins were first discovered and reported, a team of scientists has created chemical mirror images of these complex carbohydrates in the laboratory. This discovery may revolutionize how medications are delivered to patients.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Where to put head and tail?      (via sciencedaily.com)     Original source 

Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: Optics
Published

Custom-made molecules designed to be invisible while absorbing near-infrared light      (via sciencedaily.com)     Original source 

Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Physics: Optics
Published

MXenes for energy storage      (via sciencedaily.com)     Original source 

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Novel method for measuring nano/microplastic concentrations in soil using spectroscopy      (via sciencedaily.com)     Original source 

Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Golden ball mills as green catalysts      (via sciencedaily.com)     Original source 

A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Geochemistry Physics: Optics
Published

When bacteria are buckling      (via sciencedaily.com)     Original source 

Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. The results provide an important basis for the use of cyanobacteria in modern biotechnology.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Reduction of esters by a novel photocatalyst      (via sciencedaily.com)     Original source 

A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The genetic 'switches' of bone growth      (via sciencedaily.com)     Original source 

In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.

Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Concrete-nitrogen mix may provide major health and environment benefits      (via sciencedaily.com)     Original source 

Adding nitrogen to concrete could significantly reduce the amount of greenhouse gases created by the construction industry.

Chemistry: General Engineering: Nanotechnology Offbeat: General Physics: Optics
Published

Nanosized blocks spontaneously assemble in water to create tiny floating checkerboards      (via sciencedaily.com)     Original source 

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.