Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Paleontology: Climate
Published Surprisingly simple model explains how brain cells organize and connect



A new study by physicists and neuroscientists describes how connectivity among neurons comes about through general principles of networking and self-organization, rather than the biological features of an individual organism.
Published Stalagmites as climate archive



When combined with data from tree-ring records, stalagmites can open up a unique archive to study natural climate fluctuations, a research team has demonstrated. The researchers analyzed the isotopic composition of oxygen in a stalagmite formed from calcareous water in a cave in southern Germany. In conjunction with the data acquired from tree rings, they were able to reconstruct short-term climate fluctuations over centuries and correlate them with historically documented environmental events.
Published Key moment in the evolution of life on Earth captured in fossils



New research has precisely dated some of the oldest fossils of complex multicellular life in the world, helping to track a pivotal moment in the history of Earth when the seas began teeming with new lifeforms -- after four billion years of containing only single-celled microbes.
Published Bioinformatics: Researchers develop a new machine learning approach



To combat viruses, bacteria and other pathogens, synthetic biology offers new technological approaches whose performance is being validated in experiments. Researchers applied data integration and artificial intelligence (AI) to develop a machine learning approach that can predict the efficacy of CRISPR technologies more accurately than before.
Published 3D in vitro human atherosclerosis model for high-throughput drug screening



A groundbreaking 3D, three-layer nanomatrix vascular sheet that possesses multiple features of atherosclerosis has been applied for developing a high-throughput functional assay of drug candidates to treat this disease, researchers report.
Published Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging



Researchers have engineered one of the world's first yeast cells able to harness energy from light, expanding our understanding of the evolution of this trait -- and paving the way for advancements in biofuel production and cellular aging.
Published Aging mouse sperm affects MicroRNA, increasing the risk of neurodevelopmental disorders



Much is known about the added complication to pregnancy when it comes to the age of the mother, but recent studies show that the age of the father can also heighten the risk of neurodevelopmental disorders. A team of researchers has explored the impacts of paternal aging on microRNAs, the molecules that play a crucial role in regulating gene expression.
Published The first assessment of toxic heavy metal pollution in the Southern Hemisphere over the last 2,000 years



Human activity, from burning fossil fuels and fireplaces to the contaminated dust produced by mining, alters Earth's atmosphere in countless ways. Records of these impacts over time are preserved in everlasting polar ice that serves as a sort of time capsule, allowing scientists and historians to link Earth's history with that of human societies. In a new study, ice cores from Antartica show that lead and other toxic heavy metals linked to mining activities polluted the Southern Hemisphere as early as the 13th century.
Published Lab-grown retinas explain why people see colors dogs can't



With human retinas grown in a petri dish, researchers discovered how an offshoot of vitamin A generates the specialized cells that enable people to see millions of colors, an ability that dogs, cats, and other mammals do not possess. The findings increase understanding of color blindness, age-related vision loss, and other diseases linked to photoreceptor cells. They also demonstrate how genes instruct the human retina to make specific color-sensing cells, a process scientists thought was controlled by thyroid hormones.
Published Protein complex discovered to control DNA repair



The repair of damage to genetic material (DNA) in the human body is carried out by highly efficient mechanisms that have not yet been fully researched. A scientific team has now discovered a previously unrecognized control point for these processes. This could lead to a new approach for the development of cancer therapies aimed at inhibiting the repair of damaged cancer cells.
Published Ancient cities provide key datasets for urban planning, policy and predictions in the Anthropocene



A new study shows how state-of-the-art methods and perspectives from archaeology, history, and palaeoecology are shedding new light on 5,500 years of urban life.
Published Study on lamprey embryos sheds light on the evolutionary origin of vertebrate head



Scientists have investigated lamprey embryos using cutting-edge microscopic techniques to reveal interesting insights about vertebrate head evolution, clarifying an unresolved mystery in basic science.
Published Smart skin bacteria are able to secrete and produce molecules to treat acne



An experimental study has shown that a type of skin bacterium can efficiently be engineered to produce a protein to regulate sebum production. This application could treat acne without compromising the homeostasis of the entire skin microbiome.
Published Stranger than friction: A force initiating life



As the potter works the spinning wheel, the friction between their hands and the soft clay helps them shape it into all kinds of forms and creations. In a fascinating parallel, sea squirt oocytes (immature egg cells) harness friction within various compartments in their interior to undergo developmental changes after conception.
Published Large-scale mapping of pig genes could pave the way for new human medicines



Researchers have carried out complex genetic analyses of hundreds of pigs and humans to identify differences and similarities. This new knowledge can be used to ensure healthier pigs for farmers and can help the pharmaceutical industry breed better laboratory pigs for testing new medicines.
Published Life span increases in mice when specific brain cells are activated



A new study identifies, in mice, a critical communication pathway connecting the brain and the body's fat tissue in a feedback loop that appears central to energy production throughout the body. The research suggests that the gradual deterioration of this feedback loop contributes to the increasing health problems that are typical of natural aging.
Published Researchers develop algorithm to determine how cellular 'neighborhoods' function in tissues



Researchers have developed a new AI-powered algorithm to help understand how different cells organize themselves into particular tissues and communicate with one another.
Published Advancing the generation of in-vivo chimeric lungs in mice using rat-derived stem cells



Creating a functional lung using interspecies chimeric animals is an attractive albeit challenging option for lung transplantation, requiring more research on the viable conditions needed for organ generation. A new study uses reverse-blastocyst complementation and tetraploid-based organ complementation methods to first determine these conditions in lung-deficient mice and then to generate rat-derived lungs in these mice. It provides useful insights on the intrinsic species-specific barriers and factors associated with lung development in interspecies chimeric animals.
Published New roles for autophagy genes in cellular waste management and aging



Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. Scientists have now uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins -- and ultimately affect aging.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.