Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Paleontology: Climate
Published Scientists take major step towards completing the world's first synthetic yeast



A team of Scientists has completed construction of a synthetic chromosome as part of a major international project to build the world's first synthetic yeast genome. The work represents completion of one of the 16 chromosomes of the yeast genome, which is part of the biggest project ever in synthetic biology; the international synthetic yeast genome collaboration. The collaboration, known as 'Sc2.0' has been a 15-year project involving teams from around the world (UK, US, China, Singapore, UK, France and Australia), working together to make synthetic versions of all of yeast's chromosomes. Alongside this paper, another 9 publications are also released today from other teams describing their synthetic chromosomes. The final completion of the genome project -- the largest synthetic genome ever -- is expected next year.
Published Obesity linked to neurodegeneration through insulin resistance



Researchers have discovered a link between obesity and neurodegenerative disorders like Alzheimer's disease. Using the common fruit fly, the research shows that a high-sugar diet -- a hallmark of obesity -- causes insulin resistance in the brain, which in turn reduces the ability to remove neuronal debris, thus increasing the risk of neurodegeneration.
Published Video technology could transform how scientists monitor changes in species evolution and development



New research combines microscope and video technology to analyze how different species develop, and how changes in the timings of any developments can be tracked. A detailed analysis of the Energy Proxy Traits (EPTs) that result from these processes has provided researchers with the first evidence that traditionally measured timings of developmental events are associated with far broader changes to the full set of an embryo's observable characteristics.
Published How salt from the Caribbean affects our climate



Past cold periods such as the Little Ice Age were associated with reduced strength of North Atlantic currents and increased surface salinity in the Caribbean. This was accompanied by disturbances in the distribution of salt to the north leading to longer, stronger cooling phases in the northern hemisphere.
Published Research outlines how sex differences have evolved



Researchers have shown that sex differences in animals vary dramatically across species, organs and developmental stages, and evolve quickly at the gene level but slowly at the cell type level.
Published Female sex determining gene identified in mice



Researchers have identified a gene which is an early determining factor of ovary development in mice.
Published A known environmental hazard can change the epigenetics of cells



An international team of researchers has discovered that formaldehyde, a widely spread pollutant and common metabolite in our body, interferes in the epigenetic programming of the cell. This finding expands the knowledge of formaldehyde, previously considered only as a DNA mutagen, and helps establishing a further link with cancer.
Published Immunology: Dysfunction of mitochondria drives the exhaustion of T cells



In the immune system's fight against cancer and infections, the T cells often lose their power. Now immunologists may have found a possible explanation for this phenomenon.
Published How a climate model can illustrate and explain ice-age climate variability



During the last ice age, the last glacial maximum about 20,000 years ago, the climate in the North Atlantic underwent much greater multi-centennial variability than it does in the present warm period. This is supported by evidence found in ice and seafloor cores. Researchers have now shown, based on a climate model, that internal mechanisms such as temperature and salinity distribution in the ocean are driving this multi-centennial variability.
Published New study sheds light on the molecular mechanisms underlying lipid recycling within cells



Our understanding of how cells recycle lipids through autophagy -- a form of cellular degradation -- has grown significantly, thanks to a recent study. Using yeast as a model organism, the researchers explored the molecular mechanisms leading to the degradation of the phospholipid bilayers making up the cell membranes. Their findings improve our understanding of cellular degradation processes and related metabolic disorders.
Published Study links changes in global water cycle to higher temperatures



A new study takes an important step toward reconstructing a global history of water over the past 2,000 years. Using geologic and biologic evidence preserved in natural archives -- including 759 different paleoclimate records from globally distributed corals, trees, ice, cave formations and sediments -- the researchers showed that the global water cycle has changed during periods of higher and lower temperatures in the recent past.
Published First mice engineered to survive COVID-19 like young, healthy humans



Researchers have genetically engineered the first mice that get a human-like form of COVID-19, according to a new study.
Published Where is a sea star's head? Maybe just about everywhere



A new study that combines genetic and molecular techniques helps solve the riddle of sea star (commonly called starfish) body plans, and how sea stars start life with bilateral body symmetry -- just like humans -- but grow up to be adults with fivefold 'pentaradial' symmetry.
Published Pinpointing HIV immune response



New research combining computer modeling and experiments with macaques shows the body's immune system helps control human immunodeficiency virus (HIV) infections largely by suppressing viral production in already infected cells while also killing viral infected cells, but only within a narrow time window at the start of a cell's infection.
Published Maternal microbiota can affect fetal development



Significant differences in the gene activity of the fetal intestine, brain and placenta were identified, depending on the microbes in the mother's body and the compounds produced by them. The findings indicate that maternal microbes are important to her offspring's development and health.
Published New Nijmegen method reveals hidden genetic variations



Many hidden genetic variations can be detected with Chameleolyser, a new method. The information is already yielding new patient diagnoses and may also lead to the discovery of as yet unknown disease genes.
Published Advanced assisted reproduction in white rhinos is safe and reliable, shows evaluation of procedures



The BioRescue project develops and pioneers advanced assisted reproduction technologies (aART) for conservation in the face of the imminent extinction of most rhino species and subspecies. In a new scientific analysis, the team evaluated 65 aART procedures conducted from 2015 to 2022. The evaluation showed that aART is safe for the donor females with no detrimental health effects, and successful in that it yielded 51 embryos.
Published New map of 20th century land use in Britain helps researchers demystify biodiversity change



Researchers have mapped how land use changed across Britain throughout the last century. The new map reveals how and where some 50 per cent of semi-natural grassland was lost, including 90 per cent of the country's lowland meadows and pasture, as the nation intensified its agriculture.
Published Scientists create special 'telomouse' with human-like telomeres



Researchers introduce the 'Telomouse'. By making a subtle genetic alteration in standard lab mice, they've made the mouse telomeres, which protect the chromosome ends, more closely resemble those in humans. The Telomouse model, developed by incorporating a genetic variation from a mouse species with naturally shorter telomeres, provides a valuable resource for in-depth aging and cancer research. This discovery promises to reveal new insights into the genetics of aging and may contribute to enhanced longevity and well-being.
Published Controlling organoids with light



Organoids help researchers understand biological processes in health and in disease. It is, however, difficult to influence the way in which they organize themselves into complex tissues. Now a group has found a new way to do so.