Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Offbeat: Space
Published Mysterious missing component in the clouds of Venus revealed



Researchers may have identified the missing component in the chemistry of the Venusian clouds that would explain their color and splotchiness in the UV range, solving a long-standing mystery.
Published New images reveal what Neptune and Uranus really look like



Neptune is fondly known for being a rich blue and Uranus green -- but a new study has revealed that the two ice giants are actually far closer in color than typically thought. The correct shades of the planets have now been confirmed.
Published New roles for autophagy genes in cellular waste management and aging



Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. Scientists have now uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins -- and ultimately affect aging.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.
Published 'Giant' predator worms more than half a billion years old discovered in North Greenland



Fossils of a new group of animal predators have been located in the Early Cambrian Sirius Passet fossil locality in North Greenland. These large worms may be some of the earliest carnivorous animals to have colonized the water column more than 518 million years ago, revealing a past dynasty of predators that scientists didn't know existed.
Published Elusive cytonemes guide neural development, provide signaling 'express route'



Discover the first images of cytonemes during mammalian neural development, serving as express routes to establish morphogen gradients and tissue patterning.
Published Hubble sights a galaxy with 'forbidden' light



A whirling image features a bright spiral galaxy known as MCG-01-24-014, which is located about 275 million light-years from Earth. In addition to being a well-defined spiral galaxy, MCG-01-24-014 has an extremely energetic core known as an active galactic nucleus (AGN) and is categorized as a Type-2 Seyfert galaxy. Seyfert galaxies, along with quasars, host one of the most common subclasses of AGN. While the precise categorization of AGNs is nuanced, Seyfert galaxies tend to be relatively nearby and their central AGN does not outshine its host, while quasars are very distant AGNs with incredible luminosities that outshine their host galaxies.
Published Researchers study a million galaxies to find out how the universe began



Researchers have analyzed more than one million galaxies to explore primordial fluctuations that seeded the formation of the structure of the entire universe.
Published Big impacts from small changes in cell



Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.
Published How jellyfish regenerate functional tentacles in days



At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.
Published Organic compounds in asteroids formed in colder regions of space



Analysis of organic compounds -- called polycyclic aromatic hydrocarbons (PAHs) -- extracted from the Ryugu asteroid and Murchison meteorite has found that certain PAHs likely formed in the cold areas of space between stars rather than in hot regions near stars as was previously thought. The findings open new possibilities for studying life beyond Earth and the chemistry of objects in space.
Published Astronomers detect seismic ripples in ancient galactic disk



A new snapshot of an ancient, far-off galaxy could help scientists understand how it formed and the origins of our own Milky Way. At more than 12 billion years old, BRI 1335-0417 is the oldest and furthest known spiral galaxy in our universe. The researchers were able to not only capture the motion of the gas around BRI 1335-0417, but also reveal a seismic wave forming -- a first in this type of early galaxy.
Published NASA's Hubble watches 'spoke season' on Saturn



A new photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes.
Published Supernova encore: Second lensed supernova in a distant galaxy



In November 2023, NASA's James Webb Space Telescope observed a massive cluster of galaxies named MACS J0138.0-2155. Through an effect called gravitational lensing, first predicted by Albert Einstein, a distant galaxy named MRG-M0138 appears warped by the powerful gravity of the intervening galaxy cluster. In addition to warping and magnifying the distant galaxy, the gravitational lensing effect caused by MACS J0138 produces five different images of MRG-M0138.
Published New tool unifies single-cell data



A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.
Published The future of canine stem cell therapy: unprecedented, painless, and feeder-free



Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.
Published Bugs that help bugs: How environmental microbes boost fruit fly reproduction



A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.
Published Researchers solve mystery behind DnaA protein's role in DNA replication initiation



Scientists have uncovered how DnaA, the master key to DNA replication, opens the door to bacterial growth. This breakthroughpaves the way for new antibiotics to combat the rising tide of antibiotic resistance.
Published New insights revealed on tissue-dependent roles of JAK signaling in inflammation



Researchers have gained a deeper understanding of the nuanced roles of JAK inhibitors, or modulators, in inflammation across various cell types and tissues.
Published How researchers are 'CReATiNG' synthetic chromosomes faster and cheaper



A new technique to clone and reassemble DNA, dubbed CReATiNG, could simplify and lower the cost to make synthetic chromosomes. Potential applications are numerous, including pharmaceutical production, biofuel generation, cancer therapies, and environmental cleanup using modified organisms. The method adds a powerful, versatile tool to the burgeoning field of synthetic biology.