Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Offbeat: Space

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Tracing the evolution of the 'little brain'      (via sciencedaily.com)     Original source 

The evolution of higher cognitive functions in humans has so far mostly been linked to the expansion of the neocortex. Researchers are increasingly realizing, however, that the 'little brain' or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans. A research team has now generated comprehensive genetic maps of the development of cells in the cerebella of human, mouse and opossum. Comparisons of these maps reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Alien haze, cooked in a lab, clears view to distant water worlds      (via sciencedaily.com)     Original source 

Scientists have simulated conditions that allow hazy skies to form in water-rich exoplanets, a crucial step in determining how haziness muddles important telescope observations for the search of habitable worlds beyond the solar system.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Telescope Array detects second highest-energy cosmic ray ever      (via sciencedaily.com)     Original source 

In 1991, an experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist. On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. The newly dubbed Amaterasu particle deepens the mystery of the origin, propagation and particle physics of rare, ultra-high-energy cosmic rays.

Biology: Developmental Offbeat: General Offbeat: Plants and Animals
Published

This sea worm's posterior body part swims away, and now scientists know how      (via sciencedaily.com)     Original source 

A research team shows how the expression of developmental genes in the Japanese green syllid worms, Megasyllis nipponica, helps form their swimming reproductive unit called stolon.  

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Nutrient found in beef and dairy improves immune response to cancer      (via sciencedaily.com)     Original source 

Trans-vaccenic acid (TVA), a long-chain fatty acid found in meat and dairy products from grazing animals such as cows and sheep, improves the ability of CD8+ T cells to infiltrate tumors and kill cancer cells, according to a new study.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

NASA's Webb reveals new features in heart of Milky Way      (via sciencedaily.com)     Original source 

The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

'Triple star' discovery could revolutionize understanding of stellar evolution      (via sciencedaily.com)     Original source 

A ground-breaking new discovery could transform the way astronomers understand some of the biggest and most common stars in the Universe.  Research by PhD student Jonathan Dodd and Professor René Oudmaijer, from the University's School of Physics and Astronomy, points to intriguing new evidence that massive Be stars -- until now mainly thought to exist in double stars -- could in fact be 'triples'.  The remarkable discovery could revolutionise our understanding of the objects -- a subset of B stars -- which are considered an important 'test bed' for developing theories on how stars evolve more generally. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Unearthing how a carnivorous fungus traps and digests worms      (via sciencedaily.com)     Original source 

A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

'Teenage galaxies' are unusually hot, glowing with unexpected elements      (via sciencedaily.com)     Original source 

Using the James Webb Space Telescope, CECILIA Survey receives first data from galaxies forming two-to-three billion years after the Big Bang. By examining light from these 33 galaxies, researchers discovered their elemental composition and temperature. The ultra-deep spectrum revealed eight distinct elements: Hydrogen, helium, nitrogen, oxygen, silicon, sulfur, argon and nickel. The teenage galaxies also were extremely hot, reaching temperatures higher than 13,350 degrees Celsius.

Offbeat: General Offbeat: Space Space: General
Published

High-power fiber lasers emerge as a pioneering technology      (via sciencedaily.com)     Original source 

Optical scientists have created a high-power 'Star Wars' style-laser, boosting their use in defense and for remote sensing applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Heart repair via neuroimmune crosstalk      (via sciencedaily.com)     Original source 

Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genomic tug of war could boost cancer therapy      (via sciencedaily.com)     Original source 

Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cell identity is preserved when cells divide      (via sciencedaily.com)     Original source 

A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation.  Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Much more than waste: Tiny vesicles exchange genetic information between cells in the sea      (via sciencedaily.com)     Original source 

Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

With unprecedented flares, stellar corpse shows signs of life      (via sciencedaily.com)     Original source 

After a distant star's explosive death, an active stellar corpse was the likely source of repeated energetic flares observed over several months -- a phenomenon astronomers had never seen before, astronomers report.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel C. diff structures are required for infection, offer new therapeutic targets      (via sciencedaily.com)     Original source 

Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles. 

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

James Webb Space Telescope detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet      (via sciencedaily.com)     Original source 

Astronomers have used recent observations made with the James Webb Space Telescope to study the atmosphere of the nearby exoplanet WASP-107b. Peering deep into the fluffy atmosphere of WASP-107b they discovered not only water vapor and sulfur dioxide, but even silicate sand clouds. These particles reside within a dynamic atmosphere that exhibits vigorous transport of material.

Geoscience: Earth Science Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

'Bouncing' comets could deliver building blocks for life to exoplanets      (via sciencedaily.com)     Original source 

How did the molecular building blocks for life end up on Earth? One long-standing theory is that they could have been delivered by comets. Now, researchers have shown how comets could deposit similar building blocks to other planets in the galaxy.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Using eclipses to calculate the transparency of Saturn's rings      (via sciencedaily.com)     Original source 

A student has measured the optical depth of Saturn's rings using a new method based on how much sunlight reached the Cassini spacecraft while it was in the shadow of the rings.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Galactic 'lightsabers': Answering longstanding questions about jets from black holes      (via sciencedaily.com)     Original source 

The one thing everyone knows about black holes is that absolutely everything nearby gets sucked into them. Almost everything, it turns out. Astrophysicists have now determined conclusively that energy close to the event horizon of black hole M87* is pushing outward, not inward. The researchers have also created a way to test the prediction that black holes lose rotational energy and to establish it's that energy that produces the incredibly powerful jets.