Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Offbeat: Computers and Math
Published AI headphones let wearer listen to a single person in a crowd, by looking at them just once



Engineers have developed an artificial intelligence system that lets someone wearing headphones look at a person speaking for three to five seconds to 'enroll' them. The system then plays just the enrolled speaker's voice in real time, even as the pair move around in noisy environments.
Published Imperceptible sensors made from 'electronic spider silk' can be printed directly on human skin



Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that's a finger or a flower petal.
Published New 'atlas' provides unprecedented insights on how genes function in early embryo development



Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.
Published Birdsong and human voice built from same genetic blueprint



Humans have been long fascinated by bird song and the cacophony of other avian sounds -- from coos and honks to quacks and peeps. But little is known about how the unique vocal organ of birds -- the syrinx -- varies from species to species or its deeper evolutionary origins. A trio of recent studies is changing that. The studies include high-resolution anatomical scans of syrinxes from hummingbirds and ostriches -- the world's smallest and largest bird species -- and the discovery that the syrinx and larynx, the vocal organ of reptiles and mammals, including humans, share the same developmental programming.
Published Novel approach to interrogate tissue-specific protein-protein interactions



Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.
Published Tracking down the genetic causes of lupus to personalize treatment



Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.
Published Exploring diversity in cell division



Animals and fungi predominantly use two different modes of cell division -- called open and closed mitosis, respectively. A new study has shown that different species of Ichthyosporea -- marine protists that are close relatives of both animals and fungi -- use either open and closed mitosis, closely correlated to whether the species has multinucleate life cycle stages. The study demonstrates the way animals do cell division might have evolved long before animals themselves did and how this is linked to an organism's life cycle.
Published Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy



Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.
Published New AI accurately predicts fly behavior



Researchers trained an AI model to accurately predict male fruit flies' courtship behavior in response to any sight of a female. This breakthrough offers new insight into how the brain processes visual data and may someday pave the way for artificial vision technology.
Published Study finds widespread 'cell cannibalism,' related phenomena across tree of life



Researchers describe cell-in-cell phenomena in which one cell engulfs and sometimes consumes another. The study shows that cases of this behavior, including cell cannibalism, are widespread across the tree of life. The findings challenge the common perception that cell-in-cell events are largely restricted to cancer cells. Rather, these events appear to be common across diverse organisms, from single-celled amoebas to complex multicellular animals.
Published 3D printing robot creates extreme shock-absorbing shape, with help of AI



See how an autonomous robot created a shock-absorbing shape no human ever could -- and what it means for designing safer helmets, packaging, car bumpers, and more.
Published Studies reveal cell-by-cell changes caused when pig hearts and kidneys are transplanted into humans



Two new studies detail the changes seen at the single-cell level in pig organs and recipient human bodies before, during, and just after the xenotransplantation surgeries in the decedents.
Published 2D materials: A catalyst for future quantum technologies



Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.
Published Diverse headgear in hoofed mammals evolved from common ancestor



From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.
Published New mechanisms behind antibiotic resistance



Two newly discovered mechanisms in bacteria have been identified that can contribute to the development of antibiotic resistance. Changing the number of copies of resistance genes in bacteria increases antibiotic resistance, and can do so very quickly. These two mechanisms, along with a third known mechanism, can occur independently of each other, even within the same bacterial cell.
Published Chronic wasting disease unlikely to move from animals to people



A new study of prion diseases, using a human cerebral organoid model, suggests there is a substantial species barrier preventing transmission of chronic wasting disease (CWD) from cervids -- deer, elk and moose -- to people. The findings are consistent with decades of similar research in animal models.
Published Physicists propose path to faster, more flexible robots



Physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery.
Published World's smallest quantum light detector on a silicon chip



Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Plants restrict use of 'Tipp-Ex proteins'



Plants have special corrective molecules at their disposal that can make retrospective modifications to copies of genes. However, it would appear that these 'Tipp-Ex proteins' do not have permission to work in all areas of the cell, only being used in chloroplasts and mitochondria. A study has now explained why this is the case. It suggests that the correction mechanism would otherwise modify copies that have nothing wrong with them, with fatal consequences for the cell.