Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Offbeat: Plants and Animals
Published Auxin signaling pathway controls root hair formation for nitrogen uptake



Root hairs represent a low-cost strategy to enhance nutrient uptake because they can significantly increase the nutrient-acquiring surface of plant roots. While primary and lateral roots are stimulated to elongate when plants grow under mild nitrogen deficiency, the existence of such a foraging response for root hairs and its underlying regulatory mechanism remain elusive. Now, researchers have revealed a framework composed of specific molecular players meditating auxin synthesis, transport and signaling that triggers root hair elongation for nitrogen acquisition.
Published Floating sea farms: A solution to feed the world and ensure fresh water by 2050



The sun and the sea -- both abundant and free -- are being harnessed in a unique project to create vertical sea farms floating on the ocean that can produce fresh water for drinking and agriculture.
Published Nutrients drive cellular reprogramming in the intestine



Researchers have unveiled an intriguing phenomenon of cellular reprogramming in mature adult organs, shedding light on a novel mechanism of adaptive growth. The study, which was conducted on fruit flies (Drosophila), provides further insights into dedifferentiation -- where specialized cells that have specific functions transform into less specialized, undifferentiated cells like stem cells.
Published These worms have rhythm



Researchers have developed a new imaging technique to observe active gene expression in real time. They found that four molecules work together to control the timing of each stage of the C. elegans worm's development. This timekeeping process could provide important clues about the natural rhythm of development in humans and other animals.
Published What do neurons, fireflies and dancing the Nutbush have in common?


Synchronicity is all around us, but it is poorly understood. Computer scientists have now developed new tools to understand how human and natural networks fall in and out of sync.
Published Fiber from crustaceans, insects, mushrooms promotes digestion



Crustaceans, insects and mushrooms are rich sources of the dietary fiber chitin, which activates the immune system and benefits metabolism, according to a new study in mice.
Published Researchers grow embryonic humanized kidneys inside pigs for 28 days



Researchers have successfully created chimeric embryos containing a combination of human and pig cells. When transferred into surrogate pig mothers, the developing humanized kidneys had normal structure and tubule formation after 28 days. This is the first time that scientists have been able to grow a solid humanized organ inside another species, though previous studies have used similar methods to generate human tissues such as blood or skeletal muscle in pigs.
Published Genetic tools probe microbial dark matter



Genetic manipulation of a puzzling, miniscule bacteria that has lived in human mouths at least since the Middle Stone Age is elucidating the genes needed for its unusual lifestyle. These Patescibacteria in the human oral microbiome reside on the surface of another, larger host microbe. Found in many water and land environments, Patescibacteria in general lack the genes required to make many molecules necessary for life, such as the amino acids that make up proteins, the fatty acids that form membranes, and the nucleotides in DNA. This has led researchers to speculate that many of them rely on other bacteria to grow. In a new study, researchers present the first glimpse into the molecular mechanisms behind their relationship with their host cells. They also share details gleaned from fluorescent, time-lapse microsopic imaging of these bacteria as they bud and send out swarms of tiny progeny, only a fraction of which are able to establish a host relationship.
Published Study illuminates mechanism that annotates genetic information passed from fathers to offspring



Scientists have identified a key part of a mechanism that annotates genetic information before it is passed from fathers to their offspring. The findings shed new light on genomic imprinting, a fundamental, biological process in which a gene from one parent is switched off while the copy from the other parent remains active. Errors in imprinting are linked to a host of diseases, such as the rare disease Silver-Russell syndrome along with certain cancers and diabetes.
Published Discovery of new cell type in thymus



Biomedical scientists have confirmed that newly discovered cells in the thymus are just like M cells, which are mostly known for their presence in the intestinal epithelium.
Published Unveiling the mechanism of 3D folding of cell sheets



A team of researchers has revealed that the Dumpy protein, a component of extracellular matrices -- or ECM -- is the key factor in regulating the stereotypic origami-like folding of wing-cell sheets. Their findings that wing cells never divide during folding nor do they exhibit spatially distinct behaviors suggest how external cues can create consistent 3D tissue structures.
Published Fossil spines reveal deep sea's past



Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.
Published Human shoulders and elbows first evolved as brakes for climbing apes



Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.
Published Will it slip or will it grip: scientists ask, 'what is snail mucus?'



Scientists profile the mucus of Cornu aspersum -- a snail species used in beauty product formulation and eaten as escargot -- and detail the composition of three unique types of secretions -- one that hydrates and protects its skin, another that works as a glue-like adhesive, and another that lubricates to allow the animal to move freely across surfaces.
Published Immune cells shape their own path



When fighting disease, our immune cells need to reach their target quickly. Researchers have now discovered that immune cells actively generate their own guidance system to navigate through complex environments. This challenges earlier notions about these movements. The researchers' findings enhance our knowledge of the immune system and offer potential new approaches to improve human immune response.
Published Di-isononyl phthalate disrupts pregnancy in mice, study finds



In a new study, researchers used mice to understand how DiNP affects pregnancy.
Published Bat study reveals how the brain is wired for collective behavior



Researchers used wireless neural recording and imaging devices to 'listen in' on the hippocampal brain activity of groups of Egyptian fruit bats as they flew freely within a large flight room. The researchers were surprised to find that, in this social setting, the bat's 'place' neurons encoded not only the animal's location, but also information about the presence or absence of other bats, and even the identity of bats in their path.
Published Three-eyed distant relative of insects and crustaceans reveals amazing detail of early animal evolution



Scientists use cutting edge scanning technology to reconstruct 'fossil monster' that lived half a billion years ago. The creature's soft anatomy was well-preserved, allowing it to be imaged almost completely: It fills a gap in our understanding of the evolution of arthropods such as insects and crustaceans.
Published Curious and cryptic: New leaf insects discovered



An international research team has described seven previously unknown species of leaf insects, also known as walking leaves. The insects belong to the stick and leaf insect order, which are known for their unusual appearance: they look confusingly similar to parts of plants such as twigs, bark or -- in the case of leaf insects -- leaves. This sophisticated camouflage provides excellent protection from predators as well as presenting a challenge to researchers. Genetic analysis enabled the researchers to discover 'cryptic species', which cannot be distinguished by their external appearance alone. The findings are not only important for the systematic study of leaf insects, but also for the protection of their diversity.
Published New approach to fighting malaria



Findings can open up new avenues for targeted approaches toward therapeutic strategies against the malaria-causing P. falciparum that are aimed at stopping the parasite's life cycle progression and its sexual differentiation, thus blocking the transmission of the parasite into mosquitoes.