Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental
Published Ancient viruses fuel modern-day cancers (via sciencedaily.com) Original source
The human genome is filled with flecks of DNA left behind by viruses that infected primate ancestors tens of millions of years ago. Scientists used to think they were harmless, but new research shows that, when reawakened, they help cancer survive and thrive.
Published Genome recording makes living cells their own historians (via sciencedaily.com) Original source
Genomes can now be used to store information about a variety of transient biological events inside of living cells, as they happen, like a flight recorder collecting data from an aircraft. The method, called ENGRAM, aims to turn cells into their own historians. ENGRAM couples each kind of biological signal or event inside a cell to a symbolic barcode. This new strategy traces and archives the type and timing of biological signals inside the cell by inserting this information into the genome. For example, this record-keeping can track the commands that turn genes on or off.
Published Unique characteristics of previously unexplored protein discovered (via sciencedaily.com) Original source
Research achieves scientific breakthrough in understanding cell division.
Published Ancient microbes offer clues to how complex life evolved (via sciencedaily.com) Original source
Researchers have discovered that a single-celled organism, a close relative of animals, harbors the remnants of ancient giant viruses woven into its own genetic code. This finding sheds light on how complex organisms may have acquired some of their genes and highlights the dynamic interplay between viruses and their hosts.
Published Big boost for new epigenetics paradigm: CoRSIVs, first discovered in humans, now found in cattle (via sciencedaily.com) Original source
A study opens new possibilities to improve production efficiency in the cattle industry and potentially animal agriculture more broadly.
Published New ways to study spinal cord malformations in embryos (via sciencedaily.com) Original source
Scientists have successfully created mechanical force sensors directly in the developing brains and spinal cords of chicken embryos, which they hope will improve understanding and prevention of birth malformations such as spina bifida.
Published Muscle machine: How water controls the speed of muscle contraction (via sciencedaily.com) Original source
The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Opening the right doors: 'Jumping gene' control mechanisms revealed (via sciencedaily.com) Original source
International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin (via sciencedaily.com) Original source
An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease (via sciencedaily.com) Original source
Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.
Published New one-step method to make multiple edits to a cell's genome (via sciencedaily.com) Original source
A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published Not so selfish after all: Viruses use freeloading genes as weapons (via sciencedaily.com) Original source
Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.
Published Researchers uncover key mechanisms in chromosome structure development (via sciencedaily.com) Original source
Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published A new breakthrough in understanding regeneration in a marine worm (via sciencedaily.com) Original source
The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Research shows how RNA 'junk' controls our genes (via sciencedaily.com) Original source
Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.
Published Researchers thwart resistant bacteria's strategy (via sciencedaily.com) Original source
Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.
Published New, holistic way to teach synthetic biology (via sciencedaily.com) Original source
Synthetic biology combines principles from science, engineering and social science, creating emerging technologies such as alternative meats and mRNA vaccines; Deconstructing synthetic biology across scales gives rise to new approach to uniting traditional disciplines; Case studies offer a modular, accessible approach to teaching at different institutions.
Published From takeoff to flight, the wiring of a fly's nervous system is mapped (via sciencedaily.com) Original source
Although a fly's motor neurons are few, it performs remarkable aerial and terrestrial feats. A wiring diagram recently created of the motor circuits in the central nervous system of the fruit fly is providing detailed information on how the nerve coordination of leg movements differs from that controlling the wings. Such studies reveal the unexpected complexity of the fly's tiny motor system. They also advance the understanding of how the central nervous system in animals coordinates individual muscles to carry out a variety of behaviors.
Published Cell division: Before commitment, a very long engagement (via sciencedaily.com) Original source
Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.
Published The on-and-off affair in DNA (via sciencedaily.com) Original source
Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.