Showing 20 articles starting at article 21

< Previous 20 articles        Next 20 articles >

Categories: Biology: Zoology, Chemistry: Inorganic Chemistry

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Engineered Bacteria make thermally stable plastics similar to polystyrene and PET      (via sciencedaily.com)     Original source 

Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable. Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of. The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology Physics: General
Published

Molecular wires with a twist      (via sciencedaily.com)     Original source 

Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Ecology: Extinction Ecology: Invasive Species Ecology: Nature Ecology: Trees Offbeat: General Offbeat: Plants and Animals
Published

'Masters of shape-shifting': How darkling beetles conquered the world      (via sciencedaily.com)     Original source 

Large-scale genomic analysis of darkling beetles, a hyper-diverse insect group of more than 30,000 species worldwide, rolls back the curtain on a 150-million-year evolutionary tale of one of Earth's most ecologically important yet inconspicuous creatures, according to new research.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A new reaction to enhance aromatic ketone use in chemical synthesis      (via sciencedaily.com)     Original source 

Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Investigating the interplay of folding and aggregation in supramolecular polymer systems      (via sciencedaily.com)     Original source 

Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Using AI to find the polymers of the future      (via sciencedaily.com)     Original source 

Finding the next groundbreaking polymer is always a challenge, but now researchers are using artificial intelligence (AI) to shape and transform the future of the field.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Paleontology and Archeology
Published

Evidence stacks up for poisonous books containing toxic dyes      (via sciencedaily.com)     Original source 

Some of the attractive hues of brightly colored, cloth-bound books from the Victorian era come from dyes that could pose a health risk to readers, collectors or librarians. The latest research on these 'poison books' used three techniques -- including one that hasn't previously been applied to books -- to assess dangerous dyes in a university collection and found some volumes had levels that might be unsafe.

Biology: Biochemistry Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

How 'winner and loser effects' impact social rank in animals -- and humans      (via sciencedaily.com)     Original source 

A new article provides a narrative review of the relevant similarities and distinctions between nonhumans and humans to assess the causes and consequences of winner and loser effects in humans.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

New insights on how bird flu crosses the species barrier      (via sciencedaily.com)     Original source 

The avian influenza virus needs to mutate to cross the species barrier and to infect and replicate within mammalian cells. Scientists have now deciphered the structure of the avian influenza virus's polymerase when it interacts with a human protein essential for the virus to replicate within the cell. The structure of this replication complex provides important information about the mutations that avian influenza polymerase must undergo to adapt to mammals, including humans. These results can help scientists monitor the evolution and adaptability of bird flu strains, such as H5N1 or H7N9, towards infecting other species.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

Searching old stem cells that stay young forever      (via sciencedaily.com)     Original source 

The sea anemone Nematostella vectensis is potentially immortal. Using molecular genetic methods, developmental biologists have now identified possible candidates for multipotent stem cells in the sea anemone for the first time. These stem cells are regulated by evolutionary highly conserved genes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General
Published

Morphable materials: Researchers coax nanoparticles to reconfigure themselves      (via sciencedaily.com)     Original source 

A view into how nanoscale building blocks can rearrange into different organized structures on command is now possible with an approach that combines an electron microscope, a small sample holder with microscopic channels, and computer simulations, according to a new study.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Researchers develop new chemical method to enhance drug discovery      (via sciencedaily.com)     Original source 

Researchers developed a novel reagent that enhances the precision of drug synthesis. This innovative method introduces a new sulfur fluoride exchange (SuFEx) reagent that allows for highly controlled production of crucial sulfur-based molecules, including sulfinamides, sulfonimidamides and sulfoximines.

Biology: Biochemistry Biology: Zoology Ecology: Extinction Ecology: Nature Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds
Published

Rethinking the dodo      (via sciencedaily.com)     Original source 

Researchers are setting out to challenge our misconceptions about the Dodo, one of the most well-known but poorly understood species of bird. Researchers have undertaken the most comprehensive review of the taxonomy of the Dodo and its closest relative, the Rodriguez Island Solitaire.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Versatile fluidic platform for programmable liquid processing      (via sciencedaily.com)     Original source 

Society relies heavily on diverse fluidic technologies. The ability to precisely capture and release various chemical and biological fluids plays a fundamental role in many fields. A long-standing challenge is to design a platform that enables the switchable capture and release of liquids with precise spatial and temporal control and accurate volumes of the fluid. Recently, researchers have invented a new method to effectively overcome this challenge.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Environmental: Ecosystems Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Blind cavefish have extraordinary taste buds      (via sciencedaily.com)     Original source 

A biologist studies blind cavefish, a species of fish that dwell in cave ponds in Mexico. He looked at the timeline for when the cavefish develop additional taste buds on the head and chin, finding the taste bud expansion starts at five months and continues into adulthood.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Nanotechnology
Published

Research provides a roadmap for improving electrochemical performance      (via sciencedaily.com)     Original source 

A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

New technique prints metal oxide thin film circuits at room temperature      (via sciencedaily.com)     Original source 

Researchers have demonstrated a technique for printing thin metal oxide films at room temperature, and have used the technique to create transparent, flexible circuits that are both robust and able to function at high temperatures.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Enhancing electron transfer for highly efficient upconversion OLEDs      (via sciencedaily.com)     Original source 

Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scientists create material that can take the temperature of nanoscale objects      (via sciencedaily.com)     Original source 

Scientists recently discovered a one-dimensional nanoscale material whose color changes as temperature changes.