Showing 20 articles starting at article 1101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Zoology, Physics: Optics

Return to the site home page

Energy: Technology Physics: Optics
Published

Material would allow users to 'tune' windows to block targeted wavelengths of light      (via sciencedaily.com) 

Researchers have demonstrated a material for next generation dynamic windows, which would allow building occupants to switch their windows between three modes: transparent, or 'normal' windows; windows that block infrared light, helping to keep a building cool; and tinted windows that control glare while maintaining the view.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology
Published

Genetically modifying individual cells in animals      (via sciencedaily.com)     Original source 

Researchers have developed a method that lets them genetically modify each cell differently in animals. This allows them to study in a single experiment what used to require many animal experiments. Using the new method, the researchers have discovered genes that are relevant for a severe rare genetic disorder.

Physics: Optics
Published

New method makes microcombs ten times more efficient      (via sciencedaily.com) 

Microcombs can help us discover planets outside our solar system and track new diseases in our bodies. But current microcombs are inefficient and unable to reach their full potential. Now, researchers have made microcombs ten times more efficient. Their breakthrough opens the way to new discoveries in space and healthcare and paves the way for high-performance lasers in a range of other technologies.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: Microbiology Biology: Zoology Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle      (via sciencedaily.com)     Original source 

A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.

Biology: Biochemistry Biology: Zoology Ecology: Animals Ecology: Nature Environmental: General Geoscience: Environmental Issues
Published

Urban light pollution linked to smaller eyes in birds      (via sciencedaily.com)     Original source 

The bright lights of big cities could be causing an evolutionary adaptation for smaller eyes in some birds, a new study indicates. Researchers found that two common songbirds, the Northern Cardinal and Carolina Wren, that live year-round in the urban core of San Antonio, Texas, had eyes about 5% smaller than members of the same species from the less bright outskirts. Researchers found no eye-size difference for two species of migratory birds, the Painted Bunting and White-eyed Vireo, no matter which part of the city they lived in for most of the year. The findings have implications for conservation efforts amid the rapid decline of bird populations across the U.S.

Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

Chameleon-inspired coating could cool and warm buildings through the seasons      (via sciencedaily.com) 

As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Optics
Published

Novel organic light-emitting diode with ultralow turn-on voltage for blue emission      (via sciencedaily.com) 

An upconversion organic light-emitting diode (OLED) based on a typical blue-fluorescence emitter achieves emission at an ultralow turn-on voltage of 1.47 V. The technology circumvents the traditional high voltage requirement for blue OLEDs, leading to potential advancements in commercial smartphone and large screen displays.

Biology: General Biology: Zoology Ecology: Animals Ecology: Nature
Published

Behavior is the secret to success for a range expansion      (via sciencedaily.com)     Original source 

While many species are undergoing drastic declines in their numbers and geographic ranges, other species seem to be thriving. Researchers investigating the great-tailed grackle, a bird that has been establishing new populations across North America in the past few decades, reveal that behavior might play a key role in their success. They found that the population on the range's edge is more persistent and has more variability in flexibility, and that this species has shifted toward living more in urban, arid environments.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Optics
Published

Electrons take flight at the nanoscale      (via sciencedaily.com) 

A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Novel ligands for transition-metal catalysis of photoreactions      (via sciencedaily.com) 

Transition metals exchange electrons with supporting ligands to form complexes that facilitate reaction catalysis in several industries, like pharmaceutical production. Both the metal center and the ligand moiety have pivotal roles in enabling catalysis. While numerous transition metal-catalyzed photoreactions have been developed, only a few new ligands have been reported. Researchers from Chiba University have now developed novel ligands to create transition metal complexes, defining new reaction capabilities.

Chemistry: Biochemistry Environmental: Water Geoscience: Environmental Issues Physics: Optics
Published

Laser-based ice-core sampling for studying climate change      (via sciencedaily.com) 

Researchers have developed a new laser-based sampling system for studying the composition of ice cores taken from glaciers. The new system has a 3-mm depth-resolution and is expected to help reconstruct continuous annual temperature changes that occurred thousands to hundreds of thousands of years ago, which will help scientists understand climate change in the past and present.

Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

Tiny sea creatures reveal the ancient origins of neurons      (via sciencedaily.com)     Original source 

A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.

Energy: Alternative Fuels Environmental: General Environmental: Water Physics: General Physics: Optics
Published

Step change in upconversion the key to clean water, green energy and futuristic medicine      (via sciencedaily.com) 

Achieving photochemical upconversion in a solid state is a step closer to reality, thanks to a new technique that could unlock vital innovations in renewable energy, water purification and advanced healthcare.

Biology: Cell Biology Biology: Microbiology Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

Brain-altering parasite turns ants into zombies at dawn and dusk      (via sciencedaily.com)     Original source 

It takes over the brains of ants, causing them to cling to blades of grass against their will. The lancet liver fluke has an exceptional lifecycle strategy, in which snails, ants and grazing animals are unwitting actors. Researchers now reveal more about the mind-bending workings of this tiny parasite.

Biology: Evolutionary Biology: Zoology Ecology: Animals
Published

Vocal learning linked to problem solving skills and brain size      (via sciencedaily.com)     Original source 

The better a songbird is at working its way around obstacles to retrieve a snack, the more complex its vocal learning ability will be.

Chemistry: Biochemistry Physics: Optics
Published

New camera offers ultrafast imaging at a fraction of the normal cost      (via sciencedaily.com) 

In a new paper, researchers report a camera that could offer a much less expensive way to achieve ultrafast imaging for a wide range of applications such as real-time monitoring of drug delivery or high-speed lidar systems for autonomous driving. Researchers show that their new diffraction-gated real-time ultrahigh-speed mapping (DRUM) camera can capture a dynamic event in a single exposure at 4.8 million frames per second.

Anthropology: Cultures Archaeology: General Biology: Zoology
Published

How just one set of animal tracks can provide a wealth of information      (via sciencedaily.com)     Original source 

Rock faces in Namibia are decorated with hundreds of stone-age images not only of animals and human footprints, but also of animal tracks. These have been largely neglected to date as researchers lacked the knowledge required to interpret them. Archaeologists have now worked together with animal tracking experts to investigate the engraved animal tracks on six rock faces in more detail, and were able to determine detailed information on the species, age, sex, limbs, side of the body, trackway and relative direction of the tracks.

Biology: Marine Biology: Microbiology Biology: Zoology Ecology: General Ecology: Research Ecology: Sea Life Environmental: Ecosystems Geoscience: Geography Geoscience: Oceanography
Published

Scientists find good places to grow long-spined sea urchins, a starting point to restore 'the lawn mowers of the reefs'      (via sciencedaily.com) 

Scientists are trying to raise as many urchins as possible because they eat algae that could otherwise smother reef ecosystems and kill corals. Researchers have identified algae on which larval sea urchins grow into juveniles in a lab setting.

Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: Nature Environmental: Biodiversity
Published

Protected nature reserves alone are insufficient for reversing biodiversity loss      (via sciencedaily.com)     Original source 

Protected nature areas are considered fundamental for maintaining biodiversity and countering its loss. But how effectively do established protected areas work and prevent negative trends? Research shows mixed effects of protected areas on various species.