Showing 20 articles starting at article 161

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Biology: Zoology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zebrafish reveal how bioelectricity shapes muscle development      (via sciencedaily.com)     Original source 

New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of vast sex differences in cellular activity has major implications for disease treatment      (via sciencedaily.com)     Original source 

The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cells boost gene expression      (via sciencedaily.com)     Original source 

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Zoology Ecology: Animals Ecology: Nature Ecology: Trees
Published

New tomato, potato family tree shows that fruit color and size evolved together      (via sciencedaily.com)     Original source 

A new family tree of the plant genus Solanum helps explain the striking diversity of their fruit color and size. This genus includes tomatoes, potatoes, eggplants, and other economically important plants.

Biology: General Biology: Zoology Mathematics: Modeling
Published

Unifying behavioral analysis through animal foundation models      (via sciencedaily.com)     Original source 

Behavioral analysis can provide a lot of information about the health status or motivations of a living being. A new technology makes it possible for a single deep learning model to detect animal motion across many species and environments. This 'foundational model', called SuperAnimal, can be used for animal conservation, biomedicine, and neuroscience research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

How to make aging a 'fairer game' for all wormkind      (via sciencedaily.com)     Original source 

Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.

Biology: Zoology Ecology: Animals Ecology: Extinction
Published

Insecticides contributed to loss of butterflies across American Midwest, study finds      (via sciencedaily.com)     Original source 

Insecticide use is a major factor causing a decrease in the size and diversity of butterfly populations across the US Midwest, according to a new study.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: Zoology Ecology: Endangered Species
Published

Interaction with insects accelerates plant evolution      (via sciencedaily.com)     Original source 

Researchers have discovered that plants benefit from a greater variety of interactions with pollinators and herbivores. Plants that are pollinated by insects and have to defend themselves against herbivores have evolved to be better adapted to different types of soil.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Zoology
Published

Odors are encoded in rings in the brain of migratory locusts      (via sciencedaily.com)     Original source 

Researchers describe how odors are encoded in the antennal lobe, the olfactory center in the brain of migratory locusts. Using transgenic locusts and imaging techniques, the researchers were able to show a ring-shaped representation of odors in the brain. The pattern of olfactory coding in the antennal lobe is the same at all stages of locust development. A better understanding of olfactory coding in the locust brain should help to learn more about how the behavior of these insects is controlled, especially their swarming.

Biology: General Biology: Zoology Ecology: Animals Offbeat: General Offbeat: Plants and Animals
Published

Fishy parenting? Punishing offspring encourages cooperation      (via sciencedaily.com)     Original source 

Scientists discovered that Neolamprologus savoryi fish use punishment to encourage offspring to cooperate in brood care, revealing advanced cognitive abilities previously thought unique to higher vertebrates. This study highlights that punishment for promoting cooperation exists beyond human societies, prompting a reevaluation of animal intelligence.

Biology: Biochemistry Biology: Marine Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: Invasive Species Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Oceanography
Published

Restored rat-free islands could support hundreds of thousands more breeding seabirds      (via sciencedaily.com)     Original source 

Archipelago case-study shows that removing invasive rats and restoring native vegetation could help bring back hundreds of thousands of breeding pairs of seabirds lost to tropical islands. Calculating that there are enough fish to sustain restored seabird populations should be an important consideration for restoration projects, scientists say. Restored seabird populations also provide huge boost to the health of surrounding coral reef ecosystems through restored nutrient cycles.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Where to put head and tail?      (via sciencedaily.com)     Original source 

Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Ecology: Extinction Ecology: Invasive Species
Published

Nile perch invasion triggered genetic bottlenecks in Lake Victoria's endemic cichlids      (via sciencedaily.com)     Original source 

Newfound evidence reveals that the upsurge of the exotic Nile perch in Lake Victoria had long-lasting effects on the genetic diversity of various local cichlid species, report scientists. Through large-scale comparative genomic analyses, the researchers found concrete proof in the collective genome of multiple species that this artificially introduced perch decimated many local fish populations, causing a 'bottleneck effect.'

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Research Ecology: Sea Life
Published

Previously uncharacterized parasite uncovered in fish worldwide      (via sciencedaily.com)     Original source 

Using genome reconstruction, scientists unveiled a once 'invisible' fish parasite present in many marine fish world-wide that belongs to the apicomplexans, one of the most important groups of parasites at a clinical level. However, it had gone unnoticed in previous studies. The parasite is geographically and taxonomically widespread in fish species around the planet, with implications for commercial fishing and oceanic food webs.

Biology: General Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: Nature
Published

'Lost' birds list will aid in protecting species      (via sciencedaily.com)     Original source 

A group of scientists has released the first comprehensive list of birds that haven't been documented with sound or video in more than a decade.

Anthropology: General Biology: Evolutionary Biology: Marine Biology: Zoology Ecology: Extinction Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Ancient polar sea reptile fossil is oldest ever found in Southern Hemisphere      (via sciencedaily.com)     Original source 

An international team of scientists has identified the oldest fossil of a sea-going reptile from the Southern Hemisphere -- a nothosaur vertebra found on New Zealand's South Island. 246 million years ago, at the beginning of the Age of Dinosaurs, New Zealand was located on the southern polar coast of a vast super-ocean called Panthalassa. 'The nothosaur found in New Zealand is over 40 million years older than the previously oldest known sauropterygian fossils from the Southern Hemisphere.

Biology: Biochemistry Biology: General Biology: Marine Biology: Zoology Ecology: Sea Life
Published

Is magnesium the sleeping potion that enables sandhoppers to survive cold winters?      (via sciencedaily.com)     Original source 

A new study has shown for the first time that when sandhoppers want to enter a period of deep sleep each winter they have the means through which to increase the magnesium levels in their bodies -- in some instances more than doubling them. Essentially acting as a natural narcotic, the magnesium puts the sandhopper into a torpid state and this enforced rest means that the creatures can stay hidden in burrows up to 30cm beneath the beach surface, to some extent buffered from wintry conditions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The genetic 'switches' of bone growth      (via sciencedaily.com)     Original source 

In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.