Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Biology: Biochemistry, Chemistry: Biochemistry
Published Ancient Antarctic microorganisms are aggressive predators



Antarctic dwelling single-celled microorganisms called archaea can behave like parasites, new research shows.
Published Circular RNAs: The new frontier in cancer research



Unravelling the complexities of circular RNAs (circRNAs) in cancer biology has positioned scientists on the cusp of revolutionary breakthroughs in the diagnosis and treatment of cancer. A new study predicts remarkable potential for circular RNAs to improve cancer treatment and patient outcomes within the next 5-10 years.
Published Combined effects of plastic pollution and seawater flooding amplify threats to coastal plant species



A new study highlights how a combination of environmental stressors -- namely plastic pollution and seawater flooding -- can increase the threats faced by plants in some of the planet's critical ecosystems. It showed that both stressors had some effects on the species tested, but being exposed to both microplastics and flooding together -- a threat likely to increase as a result of climate change and plastic use -- had a more pronounced impact on their resource allocation.
Published Breakthrough in bid to develop vaccines and drugs for neglected tropical disease



A breakthrough lays the foundations for vaccine development and for testing new preventative measures against the neglected tropical disease leishmaniasis.
Published What gave the first molecules their stability?



The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.
Published Genetic signatures of domestication identified in pigs, chickens



Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.
Published Dopamine physiology in the brain unveiled through cutting-edge brain engineering



Researchers have discovered a new correlation between neural signaling in the brain and dopamine signaling in the striatum. The human brain requires fast neural signal processing in a short period of less than a second. Dopamine is known to have the strongest effect on brain neural signals, but the research team's newly developed 'optical neural chip-based multiple brain signal monitoring technology' shows that changes in dopamine signals within the physiological range do not affect brain neural signal processing.
Published Precise package delivery in cells?



Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published Climate anomalies may play a major role in driving cholera pandemics



New research suggests that an El Nino event may have aided the establishment and spread of a novel cholera strain during an early 20th-century pandemic, supporting the idea that climate anomalies could create opportunities for the emergence of new cholera strains.
Published When it comes to DNA replication, humans and baker's yeast are more alike than different



Humans and baker's yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies. The findings visualize for the first time a molecular complex -- called CTF18-RFC in humans and Ctf18-RFC in yeast -- that loads a 'clamp' onto DNA to keep parts of the replication machinery from falling off the DNA strand.
Published Half a billion-year-old spiny slug reveals the origins of mollusks



Exceptional fossils with preserved soft parts reveal that the earliest mollusks were flat, armored slugs without shells. The new species, Shishania aculeata, was covered with hollow, organic, cone-shaped spines. The fossils preserve exceptionally rare detailed features which reveal that these spines were produced using a sophisticated secretion system that is shared with annelids (earthworms and relatives).
Published Research catalogs greenhouse gas emissions tied to energy use for interbasin water transfers



Much of the water in the West is transported across vast geographical areas by large infrastructure projects known as interbasin water transfers. Two of these projects in particular make up 85% of all energy-related greenhouse gas emissions associated with U.S. interbasin transfers -- one in Arizona and the other in California -- according to the new research.
Published Sustainable catalysts: Crystal phase-controlled cobalt nanoparticles for hydrogenation



Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, scientists report. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.
Published Which strains of tuberculosis are the most infectious?



Highly localized TB strains are less infectious in cosmopolitan cities and more likely to infect people from the geographic area that is the strain's natural habitat. The research provides the first controlled evidence that TB strains may evolve with their human hosts, adapting to be more infectious to specific populations. The findings offer new clues for tailoring preventive treatments after exposure to TB based on affinity between strains host populations.
Published Engineering researchers crack the code to boost solar cell efficiency and durability



Photovoltaic (PV) technologies, which convert light into electricity, are increasingly applied worldwide to generate renewable energy. Researchers have now developed a molecular treatment that significantly enhances the efficiency and durability of perovskite solar cells. Their breakthrough will potentially accelerate the large-scale production of this clean energy.
Published Novel nanosensing technique for quality control of viral vectors in gene therapy



Researchers develop a nanosensing platform that can assess the quality of individual viral vector particles Viral vectors hold much potential for gene editing and gene therapy, but there is a pressing need to develop quality control methods to minimize potential side effects on patients. Addressing this, researchers from Japan developed a nanosensing-based approach that can differentiate between functional and faulty viral vectors at the single-particle level. This convenient and inexpensive technique will hopefully get us one step closer to advancing treatments for genetic disorders.
Published Breakthrough in plant disease: New enzyme could lead to anti-bacterial pesticides



Scientists uncover a pivotal enzyme, XccOpgD, and its critical role in synthesizing C G16, a key compound used by Xanthomonas pathogens to enhance their virulence against plants. This breakthrough opens new avenues for developing targeted pesticides that combat plant diseases without harming beneficial organisms. Insights into XccOpgD's enzymatic mechanism and optimal conditions offer promising prospects for sustainable agriculture, bolstering crop resilience and global food security while minimizing environmental impact.
Published Electrical impedance tomography--extracellular voltage activation technique simplifies drug screening



Recently, researchers developed a non-invasive method combining electrical impedance tomography and extracellular voltage activation to evaluate drug effects on ion channels. The resulting printed circuit board sensor allows real-time monitoring of how newly developed drugs can affect ion flow in channels, providing a cost-effective and accurate alternative to traditional methods like patch-clamp techniques and paving the way toward more efficient and shorter preclinical testing in the drug discovery process.
Published Proteins as the key to precision medicine: Finding unknown effects of existing drugs



Fewer side effects, improved chances of healing: the goal of precision medicine is to provide patients with the most individualized treatment possible. This requires a precise understanding of what is happening at the cellular level. Researchers have now succeeded in mapping the interactions of 144 active substances with around 8,000 proteins. The results could help to identify previously unknown potential benefits of existing drugs.
Published Cheese of the future: Consumers open to animal-free alternatives



Companies and institutes are currently working on biotechnological processes for the production of 'dairy products' without the use of cows: In so-called precision fermentation, egg and milk proteins are produced with the help of bacteria, yeasts or other fungi. This results in foods such as milk or cheese with a familiar flavor and texture. Supporters hope that this will lead to more sustainable food production, as nutrient-rich proteins can be produced using fewer resources. But will consumers accept such products?