Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Chemistry: Organic Chemistry
Published Genetic patterns of world's farmed, domesticated foxes revealed via historical deep-dive



Domesticated animals play a prominent role in our society, with two-thirds of American families enjoying the companionship of pets and many others relying on animal products for their nutritional needs. But the process of domestication remains a bit of a mystery.
Published Degradation of cell wall key in the spread of antibiotic resistance



A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.
Published Researchers thwart resistant bacteria's strategy



Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.
Published Novel spectroscopy technique sheds light on NOx reduction



The process that can convert pollution into benign by-products is called selective catalytic reduction, or SCR. Until now, it has been unclear how this reaction actually occurs, and contradictions have long existed between reaction models within the literature. Catalysis researchers used a technology called modulation excitation spectroscopy, or MES, to finally identify the correct pathway.
Published No more stressing out over structural formulas



Structural formulas are a source of dread for many students, but they're an essential tool in biology lessons. A study has now shown that the stress levels of students working with chemical formulas are significantly reduced if they are given simple tips on how to deal with these formulas.
Published New materials: Synthetic pathway for promising nitride compounds discovered



Chemists have successfully synthesized Ruddlesden-Popper nitrides for the first time, opening the door to new materials with unique properties.
Published New deep-learning model outperforms Google AI system in predicting peptide structures



Researchers have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides -- chains of amino acids that are shorter than proteins, but perform similar biological functions. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.
Published Aromatic compounds: A ring made up solely of metal atoms



The term aromaticity is a basic, long-standing concept in chemistry that is well established for ring-shaped carbon compounds. Aromatic rings consisting solely of metal atoms were, however, heretofore unknown. A research team recently succeeded in isolating such a metal ring and describing it in full.
Published Scientists use computational modeling to guide a difficult chemical synthesis



Researchers have discovered a new way to drive chemical reactions that could generate a wide variety of azetidines -- four-membered nitrogen heterocycles that have desirable pharmaceutical properties.
Published Potent therapy candidate for fatal prion diseases



Scientists have developed a gene-silencing tool that shows promise as a therapy against fatal prion diseases. The tool, a streamlined epigenetic editor, paves the way for a new class of genetic approaches to treat certain diseases.
Published New, holistic way to teach synthetic biology



Synthetic biology combines principles from science, engineering and social science, creating emerging technologies such as alternative meats and mRNA vaccines; Deconstructing synthetic biology across scales gives rise to new approach to uniting traditional disciplines; Case studies offer a modular, accessible approach to teaching at different institutions.
Published Researchers find genetic stability in a long-term Panamanian hybrid zone of manakin birds



We often think of species as separate and distinct, but sometimes they can interbreed and create hybrids. When this happens consistently in a specific area, it forms what's known as a hybrid zone. These zones can be highly dynamic or remarkably stable, and studying them can reveal key insights into how species boundaries evolve -- or sometimes blur. Researchers now describe a hybrid zone between two manakin species in Panama that has overall remained relatively stable over the past 30 years.
Published Solar technology: Innovative light-harvesting system works very efficiently



Researchers are reporting progress on the road to more efficient utilization of solar energy: They have developed an innovative light-harvesting system.
Published Scientists discover genetic 'off switch' in legume plants that limits biological ability to source nutrients



A genetic 'off switch' that shuts down the process in which legume plants convert atmospheric nitrogen into nutrients has been identified for the first time by a team of international scientists.
Published Cell division: Before commitment, a very long engagement



Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.
Published New tool enables faster, more cost-effective genome editing of traits to improve agriculture sustainability



New research had the goal of reducing the time and cost it takes to bring an improved crop to the marketplace to improve agriculture sustainability.
Published Unlocking the world of bacteria



Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.
Published The on-and-off affair in DNA



Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.
Published Slipping a note to a neighbor: The cellular way



Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.
Published Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F



Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.