Chemistry: Organic Chemistry
Published

Solving the problems of proton-conducting perovskites for next-generation fuel cells      (via sciencedaily.com)     Original source 

As a newly developed perovskite with a large amount of intrinsic oxygen vacancies, BaSc0.8W0.2O2.8 achieves high proton conduction at low and intermediate temperatures, report scientists. By the donor doping of large W6+, this material can take up more water to increase its proton concentration, as well as reduce the proton trapping through electrostatic repulsion between the dopant and proton. These findings could pave the way to the rational design of novel perovskites for protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs).

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General
Published

Heart healthy behaviors may help reverse rapid cell aging      (via sciencedaily.com)     Original source 

The benefits gained with higher lifestyle scores may be associated with the positive influence of heart disease risk factors on the aging of the body and its cells, finds a new study in the Journal of the American Heart Association

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology Ecology: Extinction Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Bringing back an ancient bird      (via sciencedaily.com)     Original source 

Using ancient DNA extracted from the toe bone of a museum specimen, biologists have sequenced the genome of an extinct, flightless bird called the little bush moa, shedding light into an unknown corner of avian genetic history. The work is the first complete genetic map of the turkey-sized bird whose distant living cousins include the ostrich, emu, and kiwi.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mechanisms for selective multiple sclerosis treatment strategy      (via sciencedaily.com)     Original source 

Researchers have demonstrated how B cells infected with the Epstein-Barr virus (EBV) can contribute to a pathogenic, inflammatory phenotype that contributes to multiple sclerosis (MS); the group has also shown how these problematic B cells can be selectively targeted in a way that reduces the damaging autoimmune response of multiple sclerosis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

'Cloaked' proteins deliver cancer-killing therapeutics into cells      (via sciencedaily.com)     Original source 

Scientists have designed a way to 'cloak' proteins in a generalized technique that could lead to repurposing things like antibodies for biological research and therapeutic applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genetic mosaicism more common than thought      (via sciencedaily.com)     Original source 

Researchers found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality. Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings. The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Controlling water, transforming greenhouse gases      (via sciencedaily.com)     Original source 

Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

Observing mammalian cells with superfast soft X-rays      (via sciencedaily.com)     Original source 

Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

New approach to Epstein-Barr virus and resulting diseases      (via sciencedaily.com)     Original source 

The Epstein-Barr virus can cause a spectrum of diseases, including a range of cancers. Emerging data now show that inhibition of a specific metabolic pathway in infected cells can diminish latent infection and therefore the risk of downstream disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New 'atlas' provides unprecedented insights on how genes function in early embryo development      (via sciencedaily.com)     Original source 

Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Quantum Physics
Published

Shedding light on the chemical enigma of sulfur trioxide in the atmosphere      (via sciencedaily.com)     Original source 

Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel approach to interrogate tissue-specific protein-protein interactions      (via sciencedaily.com)     Original source 

Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Producing novel liquid crystals by stacking antiaromatic units      (via sciencedaily.com)     Original source 

In a recent study, researchers developed modified norcorrole molecules whose side chains favored the formation of columnar -stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.

Chemistry: General Chemistry: Organic Chemistry
Published

Unlocking complex sulfur molecules: Novel approach for synthesis of functionalized benzenethiol equivalents      (via sciencedaily.com)     Original source 

Organosulfur skeletons are crucial in many fields, including pharmaceuticals and electronics. Synthesizing organosulfur skeletons requires o-bromobenzenethiols. However, conventional methods face challenges due to quick oxidation and formation of highly reactive intermediates. Researchers have now developed a new method for synthesizing o-bromobenzenethiols from aryne intermediates via bromothiolation. This method can pave the way for the synthesis of new organosulfur compounds with applications in diverse fields.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tracking down the genetic causes of lupus to personalize treatment      (via sciencedaily.com)     Original source 

Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Sexual parasitism helped anglerfish invade the deep sea during a time of global warming      (via sciencedaily.com)     Original source 

Members of the vertebrate group including anglerfishes are unique in possessing a characteristic known as sexual parasitism, in which males temporarily attach or permanently fuse with females to mate. Now, researchers show that sexual parasitism arose during a time of major global warming and rapid transition for anglerfishes from the ocean floor to the deep, open sea.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: Genetics
Published

Gene could unlock big wheat yields for a growing population      (via sciencedaily.com)     Original source 

A study has discovered molecular pathways regulated by a gene traditionally used to control wheat-flowering behavior could be altered to achieve greater yields.

Biology: Biochemistry Biology: Biotechnology Ecology: Animals Ecology: Endangered Species Ecology: Nature
Published

Escaped GMO canola plants persist long-term, but may be losing their extra genes      (via sciencedaily.com)     Original source 

Populations of canola plants genetically engineered to be resistant to herbicides can survive outside of farms, but may be gradually losing their engineered genes, reports a new study.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy      (via sciencedaily.com)     Original source 

Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Robotics Research
Published

Researchers design new metal-free porous framework materials      (via sciencedaily.com)     Original source 

Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.