Showing 20 articles starting at article 561

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Chemistry: Thermodynamics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: Water
Published

Sparrows uniquely adapted to Bay Area marshes are losing their uniqueness      (via sciencedaily.com)     Original source 

How does loss of habitat affect the animals still living there? A genetic study of saltwater-adapted Savannah sparrows around the San Francisco Bay Area shows that the 90% loss of tidal marsh habitat has led to more interbreeding with freshwater-adapted Savannah sparrows, diminishing their genetic adaptation to saltwater, such as enlarged kidneys and larger beak. This could lessen their ability to live in a saltwater habitat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Innovative microscopy technique reveals secrets of lipid synthesis inside cells      (via sciencedaily.com)     Original source 

Researchers have made a pivotal discovery in the field of cellular microscopy. The team has successfully developed Two-Color Infrared Photothermal Microscopy (2C-IPM), a novel technology designed to investigate neutral lipids within lipid droplets of living cells. This new microscopy can be used with isotope labeling, which allows for the detailed monitoring of neutral lipid synthesis within individual lipid droplets.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology
Published

Syphilis-like diseases were widespread in Americas before arrival of Columbus, researchers find      (via sciencedaily.com)     Original source 

Researchers have discovered the genetic material of the pathogen Treponema pallidum in the bones of people who died in Brazil 2,000 years ago. This is the oldest verified discovery of this pathogen thus far, and it proves that humans were suffering from diseases akin to syphilis -- known as treponematoses -- long before Columbus's discovery of America. The new findings call into question previous theories concerning the spread of syphilis by the Spanish conquistadors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Chemistry: Biochemistry Chemistry: Thermodynamics
Published

Potential use of topological magnets for magneto-thermoelectric energy conversion      (via sciencedaily.com)     Original source 

Scientists are eager to harness the unique electrical properties of topological magnets for advancing thermoelectric materials. A collaborative research group has successfully induced positive and negative polarities, unlocking the potential for generating thermoelectric energy from materials with topological magnet properties.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Tiny worm, giant leap: Discovery of highly specific fatty acid attachment to proteins      (via sciencedaily.com)     Original source 

In a world where the intricacies of molecular biology often seem as vast and mysterious as the cosmos, a new groundbreaking study delves into the microscopic universe of proteins, unveiling a fascinating aspect of their existence. This revelation could hold profound implications for the understanding and treatment of a myriad of human diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Geochemistry
Published

Don't overeat: How archaea toggle the nitrogen-uptake switch      (via sciencedaily.com)     Original source 

By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

DNA construction led to unexpected discovery of important cell function      (via sciencedaily.com)     Original source 

Researchers have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

Ancient 'chewing gum' reveals stone age diet      (via sciencedaily.com)     Original source 

What did people eat on the west coast of Scandinavia 10,000 years ago? A new study of the DNA in a chewing gum shows that deer, trout and hazelnuts were on the diet. It also shows that one of the individuals had severe problems with her teeth.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Nearly dead plants brought back to life: Keys to aging hidden in the leaves      (via sciencedaily.com)     Original source 

Scientists have known about a particular organelle in plant cells for over a century. However, scientists have only now discovered that organelle's key role in aging.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Study throws our understanding of gene regulation for a loop      (via sciencedaily.com)     Original source 

To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. Scientists now address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Machine learning reveals sources of heterogeneity among cells in our bodies      (via sciencedaily.com)     Original source 

A team of scientists discovered the secrets of cell variability in our bodies. The findings of this research are expected to have far-reaching effects, such as improvement in the efficacy of chemotherapy treatments, or set a new paradigm in the study of antibiotic-resistant bacteria.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: Optics
Published

Glowing COVID-19 diagnostic test prototype produces results in one minute      (via sciencedaily.com)     Original source 

Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

Unraveling the role of supersulfides in regulating mitochondrial function and longevity      (via sciencedaily.com)     Original source 

Supersulfides, many of which are produced by cysteinyl-tRNA synthetase (CARS), are essential compounds across many different lifeforms. However, the precise physiological roles of CARS-produced supersulfide are unclear. Now, using a strategically engineered yeast mutant with a deficient CARS gene, researchers from Japan have shown that supersulfides control cell longevity by mediating mitochondrial energy metabolism and regulating protein quality.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology
Published

Advancement in thermoelectricity could light up the Internet of Things      (via sciencedaily.com)     Original source 

Researchers have improved the efficiency of heat-to-electricity conversion in gallium arsenide semiconductor microstructures. By judicious spatial alignment of electrons within a two-dimensional electron gas system with multiple subbands, one can substantially enhance the power factor compared with previous iterations of analogous systems. This work is an important advance in modern thermoelectric technology and will benefit the global integration of the Internet of Things.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists identify overlooked uncertainty in real-world experiments      (via sciencedaily.com)     Original source 

The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Bioinformatics: Researchers develop a new machine learning approach      (via sciencedaily.com)     Original source 

To combat viruses, bacteria and other pathogens, synthetic biology offers new technological approaches whose performance is being validated in experiments. Researchers applied data integration and artificial intelligence (AI) to develop a machine learning approach that can predict the efficacy of CRISPR technologies more accurately than before.