Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Energy: Alternative Fuels
Published Split gene-editing tool offers greater precision


To make a gene-editing tool more precise and easier to control, engineers split it into two pieces that only come back together when a third molecule is added.
Published Predicting the sustainability of a future hydrogen economy


As renewable energy sources like wind and solar ramp up, they can be used to sustainably generate hydrogen fuel. But implementing such a strategy on a large scale requires land and water dedicated to this purpose.
Published Unzipping mRNA rallies plant cells to fight infection



Living things from plants to humans must constantly adjust the chemical soup of proteins -- the workhorse molecules of life -- inside their cells to adapt to stress or changing conditions. Now, researchers have identified a previously unknown molecular mechanism that helps explain how they do it. A team now reveals hairpin-like structures of mRNA that, by zipping and unzipping, help cells change the mix of proteins they produce when under stress.
Published Sustainable energy for aviation: What are our options?


Scientists and industry leaders worldwide are looking for answers on how to make aviation sustainable by 2050 and choosing a viable sustainable fuel is a major sticking point. Aerospace engineers took a full inventory of the options to make a data-driven assessment about how they stack up in comparison. He reviewed over 300 research projects from across different sectors, not just aerospace, to synthesize the ideas and draw conclusions to help direct the dialogue about sustainable aviation toward a permanent solution.
Published Genetically modifying individual cells in animals



Researchers have developed a method that lets them genetically modify each cell differently in animals. This allows them to study in a single experiment what used to require many animal experiments. Using the new method, the researchers have discovered genes that are relevant for a severe rare genetic disorder.
Published Efficient next-generation solar panels on horizon following breakthrough


A scientific breakthrough brings mass production of the next generation of cheaper and lighter perovskite solar cells one step closer.
Published Sometimes beneficial, sometimes damaging: The double role of the enzyme chameau



Biologists have discovered why an enzyme is important for the survival of fruit flies, even though it can shorten their lives under certain conditions.
Published Chameleon-inspired coating could cool and warm buildings through the seasons


As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.
Published New Si-based photocatalyst enables efficient solar-driven hydrogen production and biomass refinery


A research team has achieved a significant breakthrough in the development of a hybrid silicon photocatalyst.
Published Spider silk is spun by silkworms for the first time, offering a green alternative to synthetic fibers


Scientists have synthesized spider silk from genetically modified silkworms, producing fibers six times tougher than the Kevlar used in bulletproof vests. The study is the first to successfully produce full-length spider silk proteins using silkworms. The findings demonstrate a technique that could be used to manufacture an environmentally friendly alternative to synthetic commercial fibers such as nylon.
Published Tall buildings could be built quicker if damping models were correct, study finds


Multi-story buildings are assembled over-cautiously to withstand wind strengths, researchers have found.
Published Fast-track strain engineering for speedy biomanufacturing


Using engineered microbes as microscopic factories has given the world steady sources of life-saving drugs, revolutionized the food industry, and allowed us to make sustainable versions of valuable chemicals previously made from petroleum. But behind each biomanufactured product on the market today is the investment of years of work and many millions of dollars in research and development funding. Scientists want to help the burgeoning industry reach new heights by accelerating and streamlining the process of engineering microbes to produce important compounds with commercial-ready efficiency.
Published Cheap and efficient catalyst could boost renewable energy storage


Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum.
Published How wind turbines react to turbulence


The output of wind turbines can rise or fall by 50 per cent in a matter of seconds. Such fluctuations in the megawatt range put a strain on both power grids and the turbines themselves. A new study presents a new stochastic method that could help to mitigate these sudden swings and achieve a more consistent electricity production.
Published Tiny sea creatures reveal the ancient origins of neurons



A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.
Published RNA for the first time recovered from an extinct species



A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.
Published Predictive model could improve hydrogen station availability


Consumer confidence in driving hydrogen-fueled vehicles could be improved by having station operators adopt a predictive model that helps them anticipate maintenance needs, according to researchers.
Published Tracking down the formation of cardenolides in plants



Scientists are investigating the previously largely unknown biosynthetic pathway that leads to the formation of cardenolides in plants. In a new study, they present two enzymes from the CYP87A family as key enzymes that catalyze the formation of pregnenolone, the precursor for the biosynthesis of plant steroids, in two different plant families. The discovery of such enzymes should help to develop platforms for the cheap and sustainable production of high quality steroid compounds for medical use.
Published Step change in upconversion the key to clean water, green energy and futuristic medicine


Achieving photochemical upconversion in a solid state is a step closer to reality, thanks to a new technique that could unlock vital innovations in renewable energy, water purification and advanced healthcare.
Published Genome editing: Reducing off-target mutations in DNA



Researchers have developed a novel genome editing technique known as NICER, which results in significantly fewer off-target mutations than CRISPR/Cas9 editing. The technique uses a different type of enzyme that makes single-stranded 'nicks' in the DNA. Repair of these nicks is more efficient and accurate than repair of double-strand breaks caused by the current CRISPR/Cas9 editing. This technique represents a novel approach for the treatment of genetic diseases caused by heterozygous mutations.