Showing 20 articles starting at article 901

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Energy: Batteries

Return to the site home page

Energy: Batteries
Published

Current thinking on batteries overturned by cathode oxidation research      (via sciencedaily.com) 

Scientists have made a significant breakthrough in understanding and overcoming the challenges associated with Ni-rich cathode materials used in lithium-ion batteries.

Energy: Batteries Energy: Technology Geoscience: Environmental Issues
Published

Dry manufacturing process offers path to cleaner, more affordable high-energy EV batteries      (via sciencedaily.com) 

Early experiments have revealed significant benefits to a dry battery manufacturing process. This eliminates the use of toxic solvents while showing promise for delivering a battery that is durable, less weighed down by inactive elements and able to maintain high energy storage capacity after use. Such improvements could boost wider EV adoption, helping to reduce carbon emissions and achieve U.S. climate goals.

Energy: Batteries
Published

Next-generation flow battery design sets records      (via sciencedaily.com) 

A new flow battery design achieves long life and capacity for grid energy storage from renewable fuels.

Energy: Batteries
Published

New design rule for high-entropy superionic solid-state conductors      (via sciencedaily.com) 

Solid electrolytes with high lithium-ion conductivity can be designed for millimeter-thick battery electrodes by increasing the complexity of their composite superionic crystals, report researchers from Tokyo Tech. This new design rule enables the synthesis of high-entropy active materials while preserving their superionic conduction.

Energy: Batteries Engineering: Nanotechnology
Published

Nanosheet technology developed to boost energy storage dielectric capacitors      (via sciencedaily.com) 

A research group has used nanosheet technology to develop a dielectric capacitor for advanced electronic and electrical power systems. Innovations in energy storage technology are vital for the effective use of renewable energy and the mass production of electric vehicles. The capacitor has the highest energy storage density recorded. It has a short charging time, high output, long life, and high temperature stability, making it a major advancement in technology.

Energy: Batteries
Published

New aluminium radical battery promises more sustainable power      (via sciencedaily.com) 

Scientists are hoping to make the world's first safe and efficient non-toxic aqueous aluminum radical battery. Scientists have now reported the first stage of developing these novel batteries.

Energy: Batteries
Published

Neutrons look inside working solid-state battery to discover its key to success      (via sciencedaily.com)     Original source 

Researchers have used neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry. They discovered that its excellent performance results from an extremely thin layer, across which charged lithium atoms quickly flow as they move from anode to cathode and blend into a solid electrolyte.

Energy: Batteries
Published

An ingredient in toothpaste may make electric cars go farther      (via sciencedaily.com)     Original source 

Scientists have developed a fluoride-containing electrolyte for lithium metal batteries that could boost the electric vehicle industry. The usefulness of this electrolyte extends to other types of advanced battery systems beyond lithium ion.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers develop digital test to directly measure HIV viral load      (via sciencedaily.com)     Original source 

A milliliter of blood contains about 15 individual drops. For a person with human immunodeficiency virus (HIV), each drop of blood could contain anywhere from fewer than 20 copies of the virus to more than 500,000 copies. Called the viral load, this is what is measured to allow clinicians to understand how patients are responding to anti-viral medications and monitor potential progression. The time-consuming viral load testing needs to be repeated several times as a patient undergoes treatment. Now, a research team has developed a time and cost-efficient digital assay that can directly measure the presence of HIV in single drop of blood.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts      (via sciencedaily.com)     Original source 

CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology Ecology: Animals Ecology: Extinction Paleontology: Early Mammals and Birds Paleontology: Fossils
Published

Extinct warbler's genome sequenced from museum specimens      (via sciencedaily.com)     Original source 

The Bachman's warbler, a songbird that was last seen in North America nearly 40 years ago, was a distinct species and not a hybrid of its two living sister species, according a new study in which the full genomes of seven museum specimens of the bird were sequenced.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Genetics Biology: Microbiology
Published

Drug decelerates bacterial race to antibiotic resistance      (via sciencedaily.com)     Original source 

Researchers report that, in laboratory cultures and animal models, a drug significantly reduces the ability of bacteria to develop antibiotic resistance, which might prolong antibiotic effectiveness.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researcher uses pressure to understand RNA dynamics      (via sciencedaily.com)     Original source 

Just as space holds infinite mysteries, when we zoom in at the level of biomolecules (one trillion times smaller than a meter), there is still so much to learn. Scientists are studying the conformational landscapes of biomolecules and how they modulate cell function. When biomolecules receive certain inputs, it can cause the atoms to rearrange and the biomolecule to change shape. This change in shape affects their function in cells, so understanding conformational dynamics is critical for drug development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

The molecular control center of our protein factories      (via sciencedaily.com)     Original source 

Researchers have deciphered a biochemical mechanism that ensures that newly formed proteins are processed correctly when they leave the cell's own protein factories. This solves a decade-old puzzle in protein sorting.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Studying herpes encephalitis with mini-brains      (via sciencedaily.com)     Original source 

The herpes simplex virus-1 can sometimes cause a dangerous brain infection. Combining an anti-inflammatory and an antiviral could help in these cases, report scientists.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Unraveling the connections between the brain and gut      (via sciencedaily.com)     Original source 

Engineers designed a technology to probe connections between the brain and the digestive tract. Using fibers embedded with a variety of sensors, as well as optogenetic stimulation, the researchers could control neural circuits connecting the gut and the brain, in mice.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Environmental: General
Published

A roadmap for gene regulation in plants      (via sciencedaily.com)     Original source 

For the first time, researchers have developed a genome-scale way to map the regulatory role of transcription factors, proteins that play a key role in gene expression and determining a plant's physiological traits. Their work reveals unprecedented insights into gene regulatory networks and identifies a new library of DNA parts that can be used to optimize plants for bioenergy and agriculture.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Now, every biologist can use machine learning      (via sciencedaily.com)     Original source 

Scientists have built a new, comprehensive AutoML platform designed for biologists with little to no ML experience. New automated machine learning platform enables easy, all-in-one analysis, design, and interpretation of biological sequences with minimal coding. Their platform, called BioAutoMATED, can use sequences of nucleic acids, peptides, or glycans as input data, and its performance is comparable to other AutoML platforms while requiring minimal user input.