Showing 20 articles starting at article 981

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Energy: Batteries

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

How superbug A. baumannii survives metal stress and resists antibiotics      (via sciencedaily.com)     Original source 

The deadly hospital pathogen Acinetobacter baumannii can live for a year on a hospital wall without food and water. Then, when it infects a vulnerable patient, it resists antibiotics as well as the body's built-in infection-fighting response. The World Health Organization (WHO) recognizes it as one of the three top pathogens in critical need of new antibiotic therapies. Now, an international team, led by Macquarie University researchers Dr. Ram Maharjan and Associate Professor Amy Cain, have discovered how the superbug can survive harsh environments and then rebound, causing deadly infections. They have found a single protein that acts as a master regulator. When the protein is damaged, the bug loses its superpowers allowing it to be controlled, in a lab setting. The research is published this month in Nucleic Acids Research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Phage structure captured, to benefit biotech applications      (via sciencedaily.com)     Original source 

Researchers have mapped out what a commonly-used form of phage looks like, which will help design better uses in future.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

New priming method improves battery life, efficiency      (via sciencedaily.com)     Original source 

Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology Paleontology: Early Mammals and Birds
Published

Researcher uses mammal DNA to zoom into the human genome with unprecedented resolution      (via sciencedaily.com)     Original source 

Scientists have precisely identified base pairs of the human genome that remained consistent over millions of years of mammalian evolution, and which play a crucial role in human disease. The team analyzed the genomes of 240 mammals, including humans and identified base pairs that were 'constrained' -- meaning they remained generally consistent -- across mammal species over the course of evolution. The most constrained base pairs in mammals were over seven times more likely to be causal for human disease and complex trait, and over 11 times more likely when researchers looked at the most constrained base pairs in primates alone.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A look inside stem cells helps create personalized regenerative medicine      (via sciencedaily.com)     Original source 

Researchers have examined a specific type of stem cell with an intracellular toolkit to determine which cells are most likely to create effective cell therapies.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology
Published

Brain-belly connection: Gut health may influence likelihood of developing Alzheimer's      (via sciencedaily.com)     Original source 

A new study pinpoints 10 bacterial groups associated with Alzheimer's disease, provides new insights into the relationship between gut makeup and dementia.

Biology: Biotechnology Biology: Microbiology
Published

Bacteria killing material could tackle hospital superbugs      (via sciencedaily.com)     Original source 

Researchers have used a common disinfectant and antiseptic to create a new antimicrobial coating material that effectively kills bacteria and viruses, including MRSA and SARS-COV-2.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Microbiology
Published

How bacteria evolve resistance to antibiotics      (via sciencedaily.com)     Original source 

Bacteria can rapidly evolve resistance to antibiotics by adapting special pumps to flush them out of their cells, according to new research. Antimicrobial resistance is a growing problem of global significance. The rise of resistant 'superbugs' threatens our ability to use antimicrobials like antibiotics to treat and prevent the spread of infections caused by microorganisms. It is hoped that the findings will improve how antibiotics are used to help prevent further spread of antimicrobial resistance.

Chemistry: General Energy: Alternative Fuels Energy: Batteries
Published

Extending the life of a lithium metal anode using a protective layer made of an extremely tough gel electrolyte      (via sciencedaily.com)     Original source 

A research team has succeeded in substantially improving the cycling performance of a lithium metal battery by developing a mechanically very strong polymeric gel electrolyte and integrating it into the battery as a layer to protect the lithium metal anode. This achievement may greatly facilitate efforts to put lithium metal anodes -- a potentially very high performance anode material -- into practical use.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Scientists create CRISPR-based drug candidate targeting the microbiome      (via sciencedaily.com)     Original source 

A new drug candidate targeting E. coli in the gut is in phase 1 clinical trials. According to a new paper it may improve the well-being of blood cancer patients and reduce their mortality rate from E. coli infections.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

'Super-resolution' imaging technology      (via sciencedaily.com)     Original source 

Researchers describe developing a super-resolution imaging platform technology to improve understanding of how nanoparticles interact within cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists develop gene silencing DNA enzyme that can target a single molecule      (via sciencedaily.com)     Original source 

Researchers have developed a DNA enzyme -- or DNAzyme -- that can distinguish between two RNA strands inside a cell and cut the disease-associated strand while leaving the healthy strand intact. This breakthrough 'gene silencing' technology could revolutionize the development of DNAzymes for treating cancer, infectious diseases and neurological disorders.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

T cells can activate themselves to fight tumors      (via sciencedaily.com)     Original source 

Scientists find an auto-signaling mechanism driving the T cell anti-tumor response; findings may inspire new cancer therapeutics and biomarkers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

New probe aids novel findings on cell functions      (via sciencedaily.com)     Original source 

New research shows the use of a new cellular probe helped discover new findings about certain cellular processes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry
Published

An unprecedented view of gene regulation      (via sciencedaily.com)     Original source 

Using a new technique, researchers have shown that they can map interactions between gene promoters and enhancers with 100 times higher resolution than has previously been possible.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Tiny microbes could brew big benefits for green biomanufacturing      (via sciencedaily.com)     Original source 

Scientists find new route in bacteria to decarbonize industry. The discovery could reduce greenhouse gas emissions from the manufacturing of fuels, drugs, and chemicals. A research team has engineered bacteria to produce new-to-nature carbon products that could provide a powerful route to sustainable biochemicals.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Elucidating the mysteries of enzyme evolution at the macromolecular level      (via sciencedaily.com)     Original source 

Researchers have made a major breakthrough earlier this year in the field of evolutionary conservation of molecular dynamics in enzymes. Their work points to potential applications in health, including the development of new drugs to treat serious diseases such as cancer or to counter antibiotic resistance.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Scientist uncovers roots of antibiotic resistance      (via sciencedaily.com)     Original source 

Microbiologists have uncovered the evolutionary origins of antimicrobial resistance (AMR) in bacteria. His studies on the bacterium that causes cholera, Vibrio cholerae, provide insight into deciphering what conditions must occur for infectious agents to become resistant. He studied genetic variants of a protein found in bacterial membranes called OmpU. Using computational and molecular approaches, his team found that several OmpU mutations in the cholera bacteria led to resistance to numerous antimicrobial agents. This resistance included antimicrobial peptides that act as defenses in the human gut.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Animals Ecology: Sea Life
Published

Gutless marine worms on a Mediterranean diet: Animals can synthesize phytosterols      (via sciencedaily.com)     Original source 

Phytosterols are good for your health, but humans and other animals are not able to make them themselves, only plants can. To acquire phytosterols, humans are increasingly turning to supplements, green smoothies, or a Mediterranean diet with plenty of plant-based foods. Researchers have now discovered that tiny gutless worms from the Mediterranean can synthesize phytosterols on their own. Their study provides evidence that many other animals also have the genes needed to make their own phytosterols.