Showing 20 articles starting at article 1361
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Energy: Technology
Published Scientists use tardigrade proteins for human health breakthrough



Natural and engineered versions of tardigrade proteins can be used to stabilize an important pharmaceutical used to treat people with hemophilia and other conditions without the need for refrigeration -- even amid high temperatures and other difficult conditions.
Published 'Green' hydrogen: How photoelectrochemical water splitting may become competitive


Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, most systems based on this 'direct approach' have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical 'green' hydrogen production can be reduced dramatically, the study shows.
Published Muscle health depends on lipid synthesis



Muscle degeneration, the most prevalent cause of frailty in hereditary diseases and aging, could be caused by a deficiency in one key enzyme in a lipid biosynthesis pathway. Researchers now characterize how the enzyme PCYT2 affects muscle health in disease and aging in laboratory mouse models.
Published Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry


Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.
Published Discovery of an unexpected function of blood immune cells: Their ability to proliferate


The ability of a cell to divide, to proliferate, is essential for life and gives rise to the formation of complex organisms from a single cell. It also allows the replacement of used cells from a limited number of 'stem' cells, which then proliferate and specialize. In cancer, however, cell proliferation is no longer controlled and becomes chaotic. Researchers have discovered that, in a healthy individual, certain blood immune cells, the monocytes, also have this ability to proliferate, with the aim to replace tissue macrophages, which are essential for the proper functioning of our body.
Published Discovery of root anatomy gene may lead to breeding more resilient corn crops


A new discovery, reported in a global study that encompassed more than a decade of research, could lead to the breeding of corn crops that can withstand drought and low-nitrogen soil conditions and ultimately ease global food insecurity.
Published How can we tackle the biggest challenges? Ask a plant


Without plants, we'd have no air to breathe or food to eat, yet plant science lingers in the shadowy wings while other fields take center stage. With the goal of shining the spotlight on plants, a new study presents the field's top 100 most pressing questions for research to address the greatest challenges facing humanity.
Published Study shines new light on ancient microbial dark matter


An international research team produced the first large-scale analysis of more than 400 newly sequenced and existing Omnitrophota genomes, uncovering new details about their biology and behavior.
Published An extra X chromosome-linked gene may explain decreased viral infection severity in females


It has long been known that viral infections can be more severe in males than females, but the question as to why has remained a mystery -- until possibly now. Researchers have found that female mouse and human Natural Killer cells have an extra copy of an X chromosome-linked gene called UTX. UTX acts as an epigenetic regulator to boost NK cell anti-viral function, while repressing NK cell numbers.
Published Compressive stress shapes the symmetry of Arabidopsis root vascular tissue


A cytokinin-mediated, proliferation-based mechanism is involved in the generation and maintenance of cell-type specific tissue boundaries during vascular development in Arabidopsis roots. Specifically, the HANABA-TARANU transcription factor forms a feed-forward loop to cytokinin signaling, which in turn regulates the position and frequency of cell proliferation of proto-vascular cells such that mechanical stress of the surrounding tissues guides growth in an apical-oriented manor, maintaining cell patterning throughout the tissue section.
Published Where the HI-Virus sleeps in the brain


The human immunodeficiency virus HIV-1 is able to infect various tissues in humans. Once inside the cells, the virus integrates its genome into the cellular genome and establishes persistent infections. The role of the structure and organization of the host genome in HIV-1 infection is not well understood. Using a cell culture model based on brain immune microglia cells, an international research team has now defined the insertion patterns of HIV-1 in the genome of microglia cells.
Published Cellular waste removal differs according to cell type


'Miniature shredders' are at work in each cell, disassembling and recycling cell components that are defective or no longer required. The exact structure of these shredders differs from cell type to cell type, a study now shows. For example, cancer cells have a special variant that can supply them particularly effectively with building blocks for their energy metabolism.
Published Researchers highlight nucleolar DNA damage response in fight against cancer


Researchers have now encapsulated the young field of nucleolar DNA damage response (DDR) pathways. A new review highlights six mechanisms by which cells repair DNA damage. By attacking these mechanisms, future applied researchers will be able to trip up cancer's reproduction and growth.
Published Minimizing electric vehicles' impact on the grid


Some projections show that widespread adoption of electric vehicles might require costly new power plants to meet peak loads in the evening. A new study shows that placing EV charging stations strategic ways and setting up systems to initiate charging at delayed times could lessen or eliminate the need for new power plants.
Published Making sense of scents: Deciphering our sense of smell


Breaking a longstanding impasse in our understanding of olfaction, scientists have created the first molecular-level, 3D picture of how an odor molecule activates a human odorant receptor, a crucial step in deciphering the sense of smell.
Published Scientists discover key information about the function of mitochondria in cancer cells


A new study represents a first step towards generating highly detailed 3-dimensional maps of lung tumors using genetically engineered mouse models.
Published Designing more useful bacteria


In a step forward for genetic engineering and synthetic biology, researchers have modified a strain of Escherichia coli bacteria to be immune to natural viral infections while also minimizing the potential for the bacteria or their modified genes to escape into the wild.
Published Propeller advance paves way for quiet, efficient electric aviation


Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Published 'Glow-in-the-dark' proteins could help diagnose viral diseases


Despite recent advancements, many highly sensitive diagnostic tests for viral diseases still require complicated techniques to prepare a sample or interpret a result, making them impractical for point-of-care settings or areas with few resources. But now, a team has developed a sensitive method that analyzes viral nucleic acids in as little as 20 minutes and can be completed in one step with 'glow-in-the-dark' proteins.
Published Molecular component of caffeine may play a role in gut health


A new study explores exactly what leads to the generation of Th17 cells -- an important subtype of cells in the intestine -- and uncovers some of the underappreciated molecular players and events that lead to cell differentiation in the gut.