Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Energy: Technology
Published Mechanisms for selective multiple sclerosis treatment strategy



Researchers have demonstrated how B cells infected with the Epstein-Barr virus (EBV) can contribute to a pathogenic, inflammatory phenotype that contributes to multiple sclerosis (MS); the group has also shown how these problematic B cells can be selectively targeted in a way that reduces the damaging autoimmune response of multiple sclerosis.
Published 'Cloaked' proteins deliver cancer-killing therapeutics into cells



Scientists have designed a way to 'cloak' proteins in a generalized technique that could lead to repurposing things like antibodies for biological research and therapeutic applications.
Published Wind farms are cheaper than you think -- and could have prevented Fukushima, says global review



Offshore wind could have prevented the Fukushima disaster, according to a review of wind energy.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Genetic mosaicism more common than thought



Researchers found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality. Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings. The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.
Published Harnessing green energy from plants depends on their circadian rhythms



Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.
Published Charge your laptop in a minute or your EV in 10? Supercapacitors can help



Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. New research could lead to such advances.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Electromechanical material doesn't get 'clamped' down



A new study finds that a class of electromechanically active materials called antiferroelectrics may hold the key to overcoming performance limitations due to clamping in miniaturized electromechanical systems.
Published New approach to Epstein-Barr virus and resulting diseases



The Epstein-Barr virus can cause a spectrum of diseases, including a range of cancers. Emerging data now show that inhibition of a specific metabolic pathway in infected cells can diminish latent infection and therefore the risk of downstream disease.
Published New 'atlas' provides unprecedented insights on how genes function in early embryo development



Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.
Published Charting a pathway to next-gen biofuels



From soil to sequestration, researchers have modeled what a supply chain for second-generation biofuels might look like in the midwestern United States.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published Novel approach to interrogate tissue-specific protein-protein interactions



Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.
Published Tracking down the genetic causes of lupus to personalize treatment



Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.
Published Sexual parasitism helped anglerfish invade the deep sea during a time of global warming



Members of the vertebrate group including anglerfishes are unique in possessing a characteristic known as sexual parasitism, in which males temporarily attach or permanently fuse with females to mate. Now, researchers show that sexual parasitism arose during a time of major global warming and rapid transition for anglerfishes from the ocean floor to the deep, open sea.
Published Gene could unlock big wheat yields for a growing population



A study has discovered molecular pathways regulated by a gene traditionally used to control wheat-flowering behavior could be altered to achieve greater yields.
Published Escaped GMO canola plants persist long-term, but may be losing their extra genes



Populations of canola plants genetically engineered to be resistant to herbicides can survive outside of farms, but may be gradually losing their engineered genes, reports a new study.
Published Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy



Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.