Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Energy: Technology
Published New technique for predicting protein dynamics may prove big breakthrough for drug discovery



Understanding the structure of proteins is critical for demystifying their functions and developing drugs that target them. To that end, a team of researchers has developed a way of using machine learning to rapidly predict multiple protein configurations to advance understanding of protein dynamics and functions.
Published Heat, cold extremes hold untapped potential for solar and wind energy



Conditions that usually accompany the kind of intense hot and cold weather that strains power grids may also provide greater opportunities to capture solar and wind energy. A study found that widespread, extreme temperature events are often accompanied by greater solar radiation and higher wind speeds that could be captured by solar panels and wind turbines. The research, which looked at extensive heat and cold waves across the six interconnected energy grid regions of the U.S. from 1980-2021, also found that every region experienced power outages during these events in the past decade. The findings suggest that using more renewable energy at these times could help offset increased power demand as more people and businesses turn on heaters or air conditioners.
Published New enzymatic cocktail can kill tuberculosis-causing mycobacteria



An enzymatic cocktail can kill a variety of mycobacterial species of bacteria, including those that cause tuberculosis.
Published Implantable batteries can run on the body's own oxygen



From pacemakers to neurostimulators, implantable medical devices rely on batteries to keep the heart on beat and dampen pain. But batteries eventually run low and require invasive surgeries to replace. To address these challenges, researchers have devised an implantable battery that runs on oxygen in the body. The study shows in rats that the proof-of-concept design can deliver stable power and is compatible with the biological system.
Published Old immune systems revitalized in mouse study, improving vaccine response



Those with aging immune systems struggle to fight off novel viruses and respond weakly to vaccination. Researchers were able to revitalize the immune system in mice.
Published Researchers show that introduced tardigrade proteins can slow metabolism in human cells



Tardigrade proteins are potential candidates in technologies centered on slowing the aging process and in long-term storage of human cells.
Published Severe hurricanes boost influx of juveniles and gene flow in a coral reef sponge



A study is the first to evaluate substrate recolonization by sponges in the U.S. Virgin Islands after two catastrophic storms using genetic analyses to understand how much clonality verses sexual recruitment occurs on coral reefs post-storms. Results show that populations of clonal marine species with low pelagic dispersion, such as A. cauliformis, may benefit from increased frequency and magnitude of hurricanes to maintain genetic diversity and combat inbreeding, enhancing the resilience of Caribbean sponge communities to extreme storm events.
Published Discovery of amino acid unveils how light makes plants open



Scientists have uncovered a unique mechanism that regulates the opening of stomata in plants. Phosphorylation of the amino acid Thr881 on the plasma membrane proton pump plays a key role in this process. The study paves the way for the targeted manipulation of plant physiology, with potential applications in agriculture and environmental sustainability.
Published Novel electrochemical sensor detects dangerous bacteria



Researchers have developed a novel sensor for the detection of bacteria. It is based on a chip with an innovative surface coating. This ensures that only very specific microorganisms adhere to the sensor -- such as certain pathogens. The larger the number of organisms, the stronger the electric signal generated by the chip. In this way, the sensor is able not only to detect dangerous bacteria with a high level of sensitivity but also to determine their concentration.
Published Pairing crypto mining with green hydrogen offers clean energy boost



Pairing cryptocurrency mining -- notable for its outsize consumption of carbon-based fuel -- with green hydrogen could provide the foundation for wider deployment of renewable energy, such as solar and wind power, according to a new study.
Published New all-liquid iron flow battery for grid energy storage



A new iron-based aqueous flow battery shows promise for grid energy storage applications.
Published Researchers take major step toward developing next-generation solar cells



Engineers have discovered a new way to manufacture solar cells using perovskite semiconductors. It could lead to lower-cost, more efficient systems for powering homes, cars, boats and drones.
Published Natural recycling at the origin of life



How was complex life able to develop on the inhospitable early Earth? At the beginning there must have been ribonucleic acid (RNA) to carry the first genetic information. To build up complexity in their sequences, these biomolecules need to release water. On the early Earth, which was largely covered in seawater, that was not so easy to do.
Published As we age, our cells are less likely to express longer genes



Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.
Published Maize genes control little helpers in the soil



Tiny organisms such as bacteria and fungi help to promote the health and function of plant roots. It is commonly assumed that the composition of these microbes is dependent on the properties of the soil. However, researchers have now discovered when studying different local varieties of maize that the genetic makeup of the plants also helps to influence which microorganisms cluster around the roots.
Published Decoding the plant world's complex biochemical communication networks



A research team has begun translating the complex molecular language of petunias. Their grammar and vocabulary are well hidden, however, within the countless proteins and other compounds that fill floral cells. Being rooted to the ground, plants can't run away from insects, pathogens or other threats to their survival. But plant scientists have long known that they do send warnings to each other via scent chemicals called volatile organic compounds.
Published Craving snacks after a meal? It might be food-seeking neurons, not an overactive appetite



Psychologists have discovered a circuit in the brain of mice that makes them crave food and seek it out, even when they are not hungry. When stimulated, this cluster of cells propels mice to forage vigorously and to prefer fatty and pleasurable foods like chocolate over healthier foods like carrots.
Published Metamaterials and AI converge, igniting innovative breakthroughs



Scientists unveil next-generation research trends in metaphotonics platforms with AI.
Published Decoding the Easter Bunny -- an eastern Finnish brown hare to represent the standard for the species' genome



Biologists have published a chromosomally assembled reference genome for the European brown hare. The genome consists of 2.9 billion base pairs, which form 23 autosomal chromosomes, and X and Y sex chromosomes. The timing of the genome release is very appropriate as the brown hare also represents the original Easter Bunny familiar from European folklore.
Published Brain-inspired wireless system to gather data from salt-sized sensors



In a new study, researchers describe a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.