Showing 20 articles starting at article 821

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Energy: Technology

Return to the site home page

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

No one-size-fits-all solution for the net-zero grid      (via sciencedaily.com)     Original source 

As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network.   The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.  

Computer Science: General Energy: Nuclear Energy: Technology Mathematics: General Mathematics: Modeling Physics: Acoustics and Ultrasound
Published

Nuclear expansion failure shows simulations require change      (via sciencedaily.com)     Original source 

A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How bacteria recognize viral invasion and activate immune defenses      (via sciencedaily.com)     Original source 

Bacteria have an array of strategies to counter viral invasion, but how they first spot a stranger in their midst has long been a mystery.

Biology: Biotechnology Biology: Microbiology
Published

Visualizing 'traffic jams' inside living cells      (via sciencedaily.com)     Original source 

Researchers have unveiled a groundbreaking approach to label-free visualization of intracellular cargo trafficking in living cells, achieving high-speed and limitless observation capabilities. By developing a cargo-localization interferometric scattering (CL-iSCAT) microscope, scientists meticulously tracked the intricate movements of numerous cargos in the bustling cellular world. Surprisingly, cells employ human-like strategies to manage their transport challenges.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Water splitting reaction for green hydrogen gas production improved      (via sciencedaily.com)     Original source 

Electrochemical catalysts used in water splitting often show poor performance due to low electrical conductance of (oxy)hydroxide species produced in situ. To overcome this challenge, researchers have now designed an electrode with Schottky Junction formed at the interface of metallic Ni-W5N4 and semiconducting NiFeOOH. The proposed electrode shows excellent catalytic activity and can facilitate industrial seawater splitting continuously for 10 days.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel C. diff structures are required for infection, offer new therapeutic targets      (via sciencedaily.com)     Original source 

Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles. 

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Using cosmetic ingredient for battery protection      (via sciencedaily.com)     Original source 

A research team has devised a battery electrode protective film using biopolymers sourced from cosmetic ingredients.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New water treatment method can generate green energy      (via sciencedaily.com)     Original source 

Researchers have designed micromotors that move around on their own to purify wastewater. The process creates ammonia, which can serve as a green energy source. Now, an AI method will be used to tune the motors to achieve the best possible results.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Shedding new light on sugars, the 'dark matter' of cellular biology      (via sciencedaily.com)     Original source 

Chemists have developed a new tool for detecting interactions between sugars and lectins, a discovery that could help in the fight against diseases like cancer.

Chemistry: Biochemistry Energy: Technology Environmental: General Physics: Acoustics and Ultrasound
Published

Putting sound waves to work to create safer public spaces      (via sciencedaily.com)     Original source 

Absorbing excess sound to make public environments like theaters and concert halls safer for hearing and using the unwanted sound waves to create electricity is the aim of a new paper. The authors built a system of piezoelectric sensors that can be installed in walls, floors, and ceilings to absorb sound waves and collect their energy. They used computer simulations to fine-tune variables including the voltage needed to power the main device component, the frequency and intensity of the input sound, and piezoelectric sensors tested in parallel and serial configurations.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

A tale of two proteins: Fundamental research could make growing better crops like clockwork      (via sciencedaily.com)     Original source 

Rhomboid-like protein 10, or RBL10, is thought to be an enzyme that degrades other proteins in the chloroplast membrane, but its function is largely unknown. Researchers are studying how RBL10 affects photosynthetic membrane lipid metabolism, an essential process in photosynthesis.

Chemistry: General Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

'Cooling glass' blasts building heat into space      (via sciencedaily.com)     Original source 

Researchers aiming to combat rising global temperatures have developed a new 'cooling glass' that can turn down the heat indoors without electricity by drawing on the cold depths of space. The new technology, a microporous glass coating, can lower the temperature of the material beneath it by 3.5 degrees Celsius at noon, and has the potential to reduce a mid-rise apartment building's yearly carbon emissions by 10 percent.

Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geography
Published

Ammonia for fertilizers without the giant carbon footprint      (via sciencedaily.com)     Original source 

Green ammonia has the potential to drastically reduce the carbon footprint needed to produce fertilizer vital for crop-growing.

Biology: Biotechnology Chemistry: Biochemistry Chemistry: General
Published

New work sheds light on inner working of cells      (via sciencedaily.com)     Original source 

New research provides a deeper understanding of the way components within cells are interconnected. Through cellular visualization using SRS microscopy, researchers have addressed the challenge of attaining clear images of individual processes.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Yeast cells can produce drugs for treatment of psychotic disorders      (via sciencedaily.com)     Original source 

An international team of researchers has demonstrated that genetically engineered yeast cells can produce the natural plant product alstonine, which has shown positive effects in treating schizophrenia.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Team creates synthetic enzymes to unravel molecular mysteries      (via sciencedaily.com)     Original source 

A bioengineer has developed synthetic enzymes that can control the behavior of the signaling protein Vg1, which plays a key role in the development of muscle, bone and blood in vertebrate embryos. The team of researchers is using a new approach, called the Synthetic Processing (SynPro) system, in zebrafish to study how Vg1 is formed. By learning the molecular rules of signal formation in a developing animal, researchers aim to engineer mechanisms -- such as giving cells new instructions -- that could play a role in treating or preventing disease.

Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Physics: Optics
Published

'Indoor solar' to power the Internet of Things      (via sciencedaily.com)     Original source 

From Wi-Fi-connected home security systems to smart toilets, the so-called Internet of Things brings personalization and convenience to devices that help run homes. But with that comes tangled electrical cords or batteries that need to be replaced. Now, researchers have brought solar panel technology indoors to power smart devices. They show which photovoltaic (PV) systems work best under cool white LEDs, a common type of indoor lighting.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General
Published

New way to count microbes speeds research, cuts waste, could lead to new antibiotics      (via sciencedaily.com)     Original source 

Researchers have developed a new way of counting microorganisms that works as much as 36 times faster than conventional methods, cuts plastic use more than 15-fold and substantially decreases the cost and carbon footprint of biomedical research. The technique could revolutionize the way microbiology experiments are conducted, allowing researchers to test potential new antibiotics in a fraction of the time.