Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Engineering: Graphene
Published New light shed on carboxysomes in key discovery that could boost photosynthesis



A research team has discovered how carboxysomes, carbon-fixing structures found in some bacteria and algae, work. The breakthrough could help scientists redesign and repurpose the structures to enable plants to convert sunlight into more energy, paving the way for improved photosynthesis efficiency, potentially increasing the global food supply and mitigating global warming.
Published New sex-determining mechanism in African butterfly discovered



In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published Why is breaking down plant material for biofuels so slow?



Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.
Published Intermittent fasting protects against liver inflammation and liver cancer



Fatty liver disease often leads to chronic liver inflammation and can even result in liver cancer. Scientists have now shown in mice that intermittent fasting on a 5:2 schedule can halt this development. The fasting regime reduces the development of liver cancer in mice with pre-existing liver inflammation. The researchers identified two proteins in liver cells that are jointly responsible for the protective effect of fasting. An approved drug can partially mimic this effect.
Published Fruit fly model identifies key regulators behind organ development



A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.
Published Progression of herpesvirus infection remodels mitochondrial organization and metabolism



Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.
Published How a 'conductor' makes sense of chaos in early mouse embryos



The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.
Published Free-forming organelles help plants adapt to climate change



Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.
Published Engineers develop innovative microbiome analysis software tools



Engineers have developed two new graph-based computational tools for tracking genomic variation within microbiomes.
Published Using advanced genetic techniques, scientists create mice with traits of Tourette disorder



In research that may be a step forward toward finding personalized treatments for Tourette disorder, scientists have bred mice that exhibit some of the same behaviors and brain abnormalities seen in humans with the disorder.
Published Aligned peptide 'noodles' could enable lab-grown biological tissues



Researchers have developed peptide-based hydrogels that mimic the aligned structure of muscle and nerve tissues, which could enable the development of functional lab-grown tissue.
Published Genomes of 'star algae' shed light on origin of plants



Land plants cover the surface of our planet and often tower over us. They form complex bodies with multiple organs that consist of a broad range of cell types. Developing this morphological complexity is underpinned by intricate networks of genes, whose coordinated action shapes plant bodies through various molecular mechanisms. All of these magnificent forms burst forth from a one-off evolutionary event: when plants conquered Earth's surface, known as plant terrestrialization.
Published New discovery of a mechanism that controls cell division



Researchers have discovered that how a special protein complex called the Mediator moves along genes in DNA may have an impact on how cells divide. The discovery may be important for future research into the treatment of certain diseases.
Published Novel chemical tool for understanding membrane remodeling in the cell



Researchers describe a natural product-like molecule, Tantalosin, that inhibits interaction between two proteins in complexes that reshape membranes inside the cell. The findings lead to a deeper understanding of how membrane remodeling works in human cells and future development of new drugs.
Published Scientists track 'doubling' in origin of cancer cells



Working with human breast and lung cells, scientists say they have charted a molecular pathway that can lure cells down a hazardous path of duplicating their genome too many times, a hallmark of cancer cells.
Published Deeper understanding of malaria parasite development unlocks opportunities to block disease spread



Natural malaria infections have been genetically analysed at a higher resolution than ever before, giving insights that could help understand and block transmission.
Published Promising new treatment strategy for deadly flu-related brain disorders



Researchers have found that a brain disorder associated with flu (influenza-associated encephalopathy, or IAE) can be caused by the influenza virus entering the brain from the blood via endothelial cells. In these cells, the researchers observed viral protein accumulation, suggesting that antivirals targeting viral transcription/translation may be useful treatments for some patients. Given the lack of effective treatments for IAE, this finding will likely improve patient care and reduce IAE-related deaths worldwide.
Published New approach in the synthesis of complex natural substances



Many natural substances possess interesting characteristics, and can form the basis of new active compounds in medicine. Terpenes, for example, are a group of substances, some of which are already used in therapies against cancer, malaria or epilepsy. They are found as fragrances in cosmetics or as flavorings in food, and form the basis of new medications: Terpenes are natural substances that occur in plants, insects and sea sponges. They are difficult to produce synthetically. However, chemists are now introducing a new method of synthesis.