Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Engineering: Graphene
Published Researchers develop artificial building blocks of life



For the first time, scientists have developed artificial nucleotides, the building blocks of DNA, with several additional properties in the laboratory.
Published Researchers open new leads in anti-HIV drug development, using a compound found in nature



A team of researchers has successfully modified a naturally occurring chemical compound in the lab, resulting in advanced lead compounds with anti-HIV activity.
Published Vitamin A may play a central role in stem cell biology and wound repair



Retinoic acid, the active state of Vitamin A, appears to regulate how stem cells enter and exit a transient state central to their role in wound repair.
Published How does a virus hijack insect sperm to control disease vectors and pests?



A widespread bacteria called Wolbachia and a virus that it carries can cause sterility in male insects by hijacking their sperm, preventing them from fertilizing eggs of females that do not have the same combination of bacteria and virus. A new study has uncovered how this microbial combination manipulates sperm, which could lead to refined techniques to control populations of agricultural pests and insects that carry diseases like Zika and dengue to humans.
Published The Malaria parasite generates genetic diversity using an evolutionary 'copy-paste' tactic



All modern Plasmodium falciparum, the deadliest malaria parasite in humans, are descendants of one initial infection and so are very closely related, with relatively limited genetic differences. A long-standing mystery in the field has revolved around a very few locations in the P. falciparum genome where there are 'spikes' of mutations -- far more than anywhere else. Researchers have identified two genes in which these unusual mutation spikes result from DNA being copied and pasted from one gene to another.
Published First atom-level structure of packaged viral genome reveals new properties, dynamics



A computational model of the more than 26 million atoms in a DNA-packed viral capsid expands our understanding of virus structure and DNA dynamics, insights that could provide new research avenues and drug targets researchers report.
Published Cracking epigenetic inheritance: Biologists discovered the secrets of how gene traits are passed on



A research team has recently made a significant breakthrough in understanding how the DNA copying machine helps pass on epigenetic information to maintain gene traits at each cell division. Understanding how this coupled mechanism could lead to new treatments for cancer and other epigenetic diseases by targeting specific changes in gene activity.
Published What makes a pathogen antibiotic-resistant?



In a comparative study, researchers describe how two notable pathogens -- Escherichia coli and Acinetobacter baumannii -- employ distinctly different tools to fend off antibiotic attack by two different drugs.
Published Early life adversity leaves long-term signatures in baboon DNA



Early experiences in an animal's life can have a significant impact on its capacity to thrive, even years or decades later, and DNA methylation may help record their effects. In a study of 256 wild baboons, researchers found that resource limitation during early life was associated with many differences in DNA methylation, a small chemical mark on the DNA sequence that can affect gene activity.
Published The world's most prolific CO2-fixing enzyme is slowly getting better



New research has found that rubisco -- the enzyme that fuels all life on Earth -- is not stuck in an evolutionary rut after all. The largest analysis of rubisco ever has found that it is improving all the time -- just very, very slowly. These insights could potentially open up new routes to strengthen food security.
Published Marine algae implants could boost crop yields



Scientists have discovered the gene that enables marine algae to make a unique type of chlorophyll. They successfully implanted this gene in a land plant, paving the way for better crop yields on less land.
Published Revealing the evolutionary origin of genomic imprinting



Some of our genes can be expressed or silenced depending on whether we inherited them from our mother or our father. The mechanism behind this phenomenon, known as genomic imprinting, is determined by DNA modifications during egg and sperm production.
Published Universal tool for tracking cell-to-cell interactions



An updated method for directly observing physical interactions between cells, could allow scientists to one day map every possible cell interaction.
Published Synthetic gene helps explain the mysteries of transcription across species



'Random DNA' is naturally active in the one-celled fungi yeast, while such DNA is turned off as its natural state in mammalian cells, despite their having a common ancestor a billion years ago and the same basic molecular machinery, a new study finds.
Published Decoding the language of epigenetic modifications



Epigenetic changes play important roles in cancer, metabolic and aging-related diseases, but also during loss of resilience as they cause the genetic material to be incorrectly interpreted in affected cells. A major study now provides important new insights into how complex epigenetic modification signatures regulate the genome. This study will pave the way for new treatments of diseases caused by faulty epigenetic machineries.
Published Tiny worms tolerate Chornobyl radiation



A new study finds that exposure to chronic radiation from Chornobyl has not damaged the genomes of microscopic worms living there today -- which doesn't mean that the region is safe, the scientists caution, but suggests that these worms are exceptionally resilient.
Published Researchers explore non-invasive method for sampling drug response



Harnessing a pervasive type of cellular messenger shows early experimental promise as a routine way of sampling and monitoring the body's response to prescription drug exposure. Experiments have successfully isolated drug-metabolizing enzymes from extracellular vesicles (EVs), which are widely secreted throughout the body for cellular communication.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published Lab-grown liver organoid to speed up turtle research, making useful traits easier to harness



Researchers developed protocols for growing organoids that mimic a turtle liver, the first organoids developed for a turtle and only the second for any reptile. The discovery will aid deeper study of turtle genetics, including the cause of traits with potential medical applications for humans such as the ability to survive weeks without oxygen.
Published Modeling the origins of life: New evidence for an 'RNA World'



Scientists provide fresh insights on the origins of life, presenting compelling evidence supporting the 'RNA World' hypothesis. The study unveils an RNA enzyme that can make accurate copies of other functional RNA strands, while also allowing new variants of the molecule to emerge over time. These remarkable capabilities suggest the earliest forms of evolution may have occurred on a molecular scale in RNA, and also bring scientists one step closer to re-creating autonomous RNA-based life in the laboratory.