Showing 20 articles starting at article 921

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Engineering: Graphene

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

How plants use sugar to produce roots      (via sciencedaily.com)     Original source 

Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. Botanists have demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to the research team leader.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Synthetic biology: proteins set vesicles in motion      (via sciencedaily.com)     Original source 

Biophysicists have designed a new cell-like transport system that represents an important milestone on the road to artificial cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Cancer cells use a new fuel in absence of sugar      (via sciencedaily.com)     Original source 

Researchers have discovered a new nutrient source that pancreatic cancer cells use to grow. The molecule, uridine, offers insight into both biochemical processes and possible therapeutic pathways. The findings show that cancer cells can adapt when they don't have access to glucose.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Scales or feathers? It all comes down to a few genes      (via sciencedaily.com)     Original source 

Scales, spines, feathers and hair are examples of vertebrate skin appendages, which constitute a remarkably diverse group of micro-organs. Despite their natural multitude of forms, these appendages share early developmental processes at the embryonic stage. Researchers have discovered how to permanently transform the scales that normally cover the feet of chickens into feathers, by specifically modifying the expression of certain genes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

A channel involved in pain sensation can also suppress it      (via sciencedaily.com)     Original source 

Pain is good. It's the body's way to keep an animal from harming itself or repeating a dangerous mistake. But sometimes the debilitating sensation can get in the way. So evolution has devised ways to tamp that response down under certain circumstances.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers reveal DNA repair mechanism      (via sciencedaily.com)     Original source 

A new study adds to an emerging, radically new picture of how bacterial cells continually repair faulty sections of their DNA.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

How superbug A. baumannii survives metal stress and resists antibiotics      (via sciencedaily.com)     Original source 

The deadly hospital pathogen Acinetobacter baumannii can live for a year on a hospital wall without food and water. Then, when it infects a vulnerable patient, it resists antibiotics as well as the body's built-in infection-fighting response. The World Health Organization (WHO) recognizes it as one of the three top pathogens in critical need of new antibiotic therapies. Now, an international team, led by Macquarie University researchers Dr. Ram Maharjan and Associate Professor Amy Cain, have discovered how the superbug can survive harsh environments and then rebound, causing deadly infections. They have found a single protein that acts as a master regulator. When the protein is damaged, the bug loses its superpowers allowing it to be controlled, in a lab setting. The research is published this month in Nucleic Acids Research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Phage structure captured, to benefit biotech applications      (via sciencedaily.com)     Original source 

Researchers have mapped out what a commonly-used form of phage looks like, which will help design better uses in future.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

New priming method improves battery life, efficiency      (via sciencedaily.com)     Original source 

Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology Paleontology: Early Mammals and Birds
Published

Researcher uses mammal DNA to zoom into the human genome with unprecedented resolution      (via sciencedaily.com)     Original source 

Scientists have precisely identified base pairs of the human genome that remained consistent over millions of years of mammalian evolution, and which play a crucial role in human disease. The team analyzed the genomes of 240 mammals, including humans and identified base pairs that were 'constrained' -- meaning they remained generally consistent -- across mammal species over the course of evolution. The most constrained base pairs in mammals were over seven times more likely to be causal for human disease and complex trait, and over 11 times more likely when researchers looked at the most constrained base pairs in primates alone.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A look inside stem cells helps create personalized regenerative medicine      (via sciencedaily.com)     Original source 

Researchers have examined a specific type of stem cell with an intracellular toolkit to determine which cells are most likely to create effective cell therapies.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology
Published

Brain-belly connection: Gut health may influence likelihood of developing Alzheimer's      (via sciencedaily.com)     Original source 

A new study pinpoints 10 bacterial groups associated with Alzheimer's disease, provides new insights into the relationship between gut makeup and dementia.

Biology: Biotechnology Biology: Microbiology
Published

Bacteria killing material could tackle hospital superbugs      (via sciencedaily.com)     Original source 

Researchers have used a common disinfectant and antiseptic to create a new antimicrobial coating material that effectively kills bacteria and viruses, including MRSA and SARS-COV-2.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Microbiology
Published

How bacteria evolve resistance to antibiotics      (via sciencedaily.com)     Original source 

Bacteria can rapidly evolve resistance to antibiotics by adapting special pumps to flush them out of their cells, according to new research. Antimicrobial resistance is a growing problem of global significance. The rise of resistant 'superbugs' threatens our ability to use antimicrobials like antibiotics to treat and prevent the spread of infections caused by microorganisms. It is hoped that the findings will improve how antibiotics are used to help prevent further spread of antimicrobial resistance.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

With new experimental method, researchers probe spin structure in 2D materials for first time      (via sciencedaily.com)     Original source 

In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Scientists create CRISPR-based drug candidate targeting the microbiome      (via sciencedaily.com)     Original source 

A new drug candidate targeting E. coli in the gut is in phase 1 clinical trials. According to a new paper it may improve the well-being of blood cancer patients and reduce their mortality rate from E. coli infections.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

'Super-resolution' imaging technology      (via sciencedaily.com)     Original source 

Researchers describe developing a super-resolution imaging platform technology to improve understanding of how nanoparticles interact within cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists develop gene silencing DNA enzyme that can target a single molecule      (via sciencedaily.com)     Original source 

Researchers have developed a DNA enzyme -- or DNAzyme -- that can distinguish between two RNA strands inside a cell and cut the disease-associated strand while leaving the healthy strand intact. This breakthrough 'gene silencing' technology could revolutionize the development of DNAzymes for treating cancer, infectious diseases and neurological disorders.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

T cells can activate themselves to fight tumors      (via sciencedaily.com)     Original source 

Scientists find an auto-signaling mechanism driving the T cell anti-tumor response; findings may inspire new cancer therapeutics and biomarkers.