Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Engineering: Robotics Research
Published How to make aging a 'fairer game' for all wormkind



Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.
Published Odors are encoded in rings in the brain of migratory locusts



Researchers describe how odors are encoded in the antennal lobe, the olfactory center in the brain of migratory locusts. Using transgenic locusts and imaging techniques, the researchers were able to show a ring-shaped representation of odors in the brain. The pattern of olfactory coding in the antennal lobe is the same at all stages of locust development. A better understanding of olfactory coding in the locust brain should help to learn more about how the behavior of these insects is controlled, especially their swarming.
Published Where to put head and tail?



Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.
Published Breakthrough approach enables bidirectional BCI functionality



Brain-computer interfaces or BCIs hold immense potential for individuals with a wide range of neurological conditions, but the road to implementation is long and nuanced for both the invasive and noninvasive versions of the technology. Scientists have now successfully integrated a novel focused ultrasound stimulation to realize bidirectional BCI that both encodes and decodes brain waves using machine learning in a study with 25 human subjects. This work opens up a new avenue to significantly enhance not only the signal quality, but also, overall nonivasive BCI performance by stimulating targeted neural circuits.
Published Researchers use large language models to help robots navigate



A technique can plan a trajectory for a robot using only language-based inputs. While it can't outperform vision-based approaches, it could be useful in settings that lack visual data to use for training.
Published Vitamin B6: New compound delays degradation



A low vitamin B6 level has negative effects on brain performance. A research team has now found a way to delay the degradation of the vitamin.
Published The genetic 'switches' of bone growth



In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.
Published Self-assembling and disassembling swarm molecular robots via DNA molecular controller



Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Modifying genomes of tardigrades to unravel their secrets



Some species of tardigrades are highly and unusually resilient to various extreme conditions fatal to most other forms of life. The genetic basis for these exceptional abilities remains elusive. Researchers have now successfully edited genes using the CRISPR technique in a highly resilient tardigrade species previously impossible to study with genome-editing tools. The successful delivery of CRISPR to an asexual tardigrade species directly produces gene-edited offspring. The design and editing of specific tardigrade genes allow researchers to investigate which are responsible for tardigrade resilience and how such resilience can work.
Published Mobile monitoring for an airborne carcinogen in Louisiana's 'Cancer Alley'



Louisiana's southeastern corridor is sometimes known colloquially as 'Cancer Alley' for its high cancer incidence rates connected to industrial air pollution. Most of the region's air pollution-related health risks are attributed to ethylene oxide, a volatile compound used to make plastics and sterilize medical equipment. Researchers measured concerning levels of ethylene oxide in this area with mobile optical instruments, a technique they say could improve health risk assessments.
Published Robot radiotherapy could improve treatments for eye disease



Researchers have successfully used a new robot system to improve treatment for debilitating eye disease.
Published Towards a new era in flexible piezoelectric sensors for both humans and robots



Flexible piezoelectric sensors are essential to monitor the motions of both humans and humanoid robots. However, existing designs are either are costly or have limited sensitivity. In a recent study, researchers tackled these issues by developing a novel piezoelectric composite material made from electrospun polyvinylidene fluoride nanofibers combined with dopamine. Sensors made from this material showed significant performance and stability improvements at a low cost, promising advancements in medicine, healthcare, and robotics.
Published AI-powered simulation training improves human performance in robotic exoskeletons



Researchers have demonstrated a new method that leverages artificial intelligence (AI) and computer simulations to train robotic exoskeletons to autonomously help users save energy while walking, running and climbing stairs.
Published New technique reveals earliest signs of genetic mutations



Mutations are changes in the molecular 'letters' that make up the DNA code, the blueprint for all living cells. Some of these changes can have little effect, but others can lead to diseases, including cancer. Now, a new study introduces an original technique, called HiDEF-seq, that can accurately detect the early molecular changes in DNA code that precede mutations.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
Published Scientists engineer yellow-seeded camelina with high oil output



Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.
Published Virus-like nanoparticles control the multicellular organization and reproduction of host bacteria



Researchers have discovered that virus-like nanoparticles can promote the multicellular organization and reproduction of host bacteria. These particles, which are evolutionarily related to phages (viruses that infect bacteria), contain an enzyme that helps shape the multicellular architecture and ultimately enhances morphological differentiation.
Published Researchers create realistic virtual rodent



To help probe the mystery of how brains control movement, scientists have created a virtual rat with an artificial brain that can move around just like a real rodent. The researchers found that activations in the virtual control network accurately predicted neural activity measured from the brains of real rats producing the same behaviors.
Published Trash-sorting robot mimics complex human sense of touch



Researchers are breaking through the difficulties of robotic recognition of various common, yet complex, items. Their layered sensor is equipped with material detection at the surface and pressure sensitivity at the bottom, with a porous middle layer sensitive to thermal changes. An efficient cascade classification algorithm rules out object types in order, from easy to hard, starting with simple categories like empty cartons before moving on to orange peels or scraps of cloth.