Biology: Biochemistry Biology: Zoology Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Cats purrfectly demonstrate what it takes to trust robots      (via sciencedaily.com)     Original source 

Would you trust a robot to look after your cat? New research suggests it takes more than a carefully designed robot to care for your cat, the environment in which they operate is also vital, as well as human interaction.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Animals
Published

New viruses that could cause epidemics on the horizon      (via sciencedaily.com)     Original source 

Suddenly they appear and -- like the SARS-CoV-2 coronavirus -- can trigger major epidemics: Viruses that nobody had on their radar. They are not really new, but they have changed genetically. In particular, the exchange of genetic material between different virus species can lead to the sudden emergence of threatening pathogens with significantly altered characteristics.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Offbeat: Plants and Animals
Published

Like dad and like mum ... all in one plant      (via sciencedaily.com)     Original source 

Scientists have established a system to generate clonal sex cells in tomato plants and used them to design the genomes of offspring. The fertilization of a clonal egg from one parent by a clonal sperm from another parent led to plants containing the complete genetic information of both parents.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Ecology: Sea Life Environmental: Water
Published

How do genetically identical water fleas develop into male or female?      (via sciencedaily.com)     Original source 

Researchers have used a novel combination of short-read and long-read RNA sequencing to identify the different isoforms of genes expressed in the crustacean Daphnia magna. Males and females are genetically identical, but using this technique the team revealed genes that switch the predominant isoform in a male-female-dependent manner. This study may help further advance technologies in crustacean aquaculture.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Research shows that 'softer' proteins can cross into the nucleus quicker      (via sciencedaily.com)     Original source 

Researchers have discovered that how soft or rigid proteins are in certain regions can dictate how fast or slow they enter the nucleus.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cellular activity hints that recycling is in our DNA      (via sciencedaily.com)     Original source 

Introns are perhaps one of our genome's biggest mysteries. They are DNA sequences that interrupt the sensible protein-coding information in your genes, and need to be 'spliced out.'

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Molecular Ecology: Nature Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists unlock key to breeding 'carbon gobbling' plants with a major appetite      (via sciencedaily.com)     Original source 

The discovery of how a critical enzyme 'hidden in nature's blueprint' works sheds new light on how cells control key processes in carbon fixation, a process fundamental for life on Earth. The discovery could help engineer climate resilient crops capable of sucking carbon dioxide from the atmosphere more efficiently, helping to produce more food in the process.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New light shed on carboxysomes in key discovery that could boost photosynthesis      (via sciencedaily.com)     Original source 

A research team has discovered how carboxysomes, carbon-fixing structures found in some bacteria and algae, work. The breakthrough could help scientists redesign and repurpose the structures to enable plants to convert sunlight into more energy, paving the way for improved photosynthesis efficiency, potentially increasing the global food supply and mitigating global warming.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

A better way to control shape-shifting soft robots      (via sciencedaily.com)     Original source 

A new machine-learning technique can train and control a reconfigurable soft robot that can dynamically change its shape to complete a task. The researchers also built a simulator that can evaluate control algorithms for shape-shifting soft robots.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

New sex-determining mechanism in African butterfly discovered      (via sciencedaily.com)     Original source 

In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research
Published

Robotic system feeds people with severe mobility limitations      (via sciencedaily.com)     Original source 

Researchers have developed a robotic feeding system that uses computer vision, machine learning and multimodal sensing to safely feed people with severe mobility limitations, including those with spinal cord injuries, cerebral palsy and multiple sclerosis.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Generative AI that imitates human motion      (via sciencedaily.com)     Original source 

Walking and running is notoriously difficult to recreate in robots. Now, a group of researchers has overcome some of these challenges by creating an innovative method that employs central pattern generators -- neural circuits located in the spinal cord that generate rhythmic patterns of muscle activity -- with deep reinforcement learning. The method not only imitates walking and running motions but also generates movements for frequencies where motion data is absent, enables smooth transition movements from walking to running, and allows for adapting to environments with unstable surfaces.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

An epigenome editing toolkit to dissect the mechanisms of gene regulation      (via sciencedaily.com)     Original source 

A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.

Chemistry: Biochemistry Engineering: Nanotechnology Engineering: Robotics Research Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Swarms of miniature robots clean up microplastics and microbes, simultaneously      (via sciencedaily.com)     Original source 

When old food packaging, discarded children's toys and other mismanaged plastic waste break down into microplastics, they become even harder to clean up from oceans and waterways. These tiny bits of plastic also attract bacteria, including those that cause disease. Researchers describe swarms of microscale robots (microrobots) that captured bits of plastic and bacteria from water. Afterward, the bots were decontaminated and reused.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Environmental: General
Published

Why is breaking down plant material for biofuels so slow?      (via sciencedaily.com)     Original source 

Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General
Published

Intermittent fasting protects against liver inflammation and liver cancer      (via sciencedaily.com)     Original source 

Fatty liver disease often leads to chronic liver inflammation and can even result in liver cancer. Scientists have now shown in mice that intermittent fasting on a 5:2 schedule can halt this development. The fasting regime reduces the development of liver cancer in mice with pre-existing liver inflammation. The researchers identified two proteins in liver cells that are jointly responsible for the protective effect of fasting. An approved drug can partially mimic this effect.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Fruit fly model identifies key regulators behind organ development      (via sciencedaily.com)     Original source 

A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Progression of herpesvirus infection remodels mitochondrial organization and metabolism      (via sciencedaily.com)     Original source 

Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

How a 'conductor' makes sense of chaos in early mouse embryos      (via sciencedaily.com)     Original source 

The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Free-forming organelles help plants adapt to climate change      (via sciencedaily.com)     Original source 

Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.