Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Engineering: Robotics Research
Published New and improved way to grow the cells that give rise to the kidney's filtration system



Scientists report significant progress in cultivating nephron progenitor cells (NPCs), the cells destined to form the kidney's filtration system, the nephrons. NPCs hold immense promise for understanding kidney development, modeling diseases, and discovering new treatments. The team improved the chemical cocktail for generating and growing NPCs in the laboratory, enabling the sustained growth of both mouse and human NPCs in a simple 2-dimensional format.
Published Researchers parse oddity of distantly related bats in Solomon Islands that appear identical



A study of body size in leaf-nosed bats of the Solomon Islands has revealed surprising genetic diversity among nearly indistinguishable species on different islands.
Published Discovery of mechanism plants use to change seed oil could impact industrial, food oils



Researchers have discovered a new mechanism of oil biosynthesis and found a way to genetically engineer a type of test plant to more efficiently produce different kinds of seed oil that it otherwise wouldn't make. While the engineering is proof-of-concept, this discovery could lead to improved production of valuable oils used in food and by a range of industries. The modified plant overcame metabolic bottlenecks and produced significant amounts of an oil similar to castor oil that it doesn't naturally produce.
Published Trotting robots reveal emergence of animal gait transitions



A four-legged robot trained with machine learning has learned to avoid falls by spontaneously switching between walking, trotting, and pronking -- a milestone for roboticists as well as biologists interested in animal locomotion.
Published Research on RNA editing illuminates possible lifesaving treatments for genetic diseases



The research explores how CRISPR can be used to edit RNA.
Published Scientists develop strong yet reusable adhesive from smart materials



Scientists have developed a smart, reusable adhesive more than ten times stronger than a gecko's feet adhesion, pointing the way for development of reusable superglue and grippers capable of holding heavy weights across rough and smooth surfaces. The research team found a way to maximize the adhesion of the smart adhesives by using shape-memory polymers, which can stick and detach easily when needed simply by heating them. This smart adhesive can support extremely heavy weights, opening new possibilities for robotic grippers that allow humans to scale walls effortlessly, or climbing robots that can cling onto ceilings for survey or repair applications.
Published Study details a common bacterial defense against viral infection



Researchers report on the molecular assembly of one of the most common anti-phage systems -- from the family of proteins called Gabija -- that is estimated to be used by at least 8.5%, and up to 18%, of all bacteria species on Earth.
Published Robotic nerve 'cuffs' could help treat a range of neurological conditions



Researchers have developed tiny, flexible devices that can wrap around individual nerve fibers without damaging them. The researchers combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.
Published A shortcut for drug discovery



For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Published Curiosity promotes biodiversity



Cichlid fishes exhibit differing degrees of curiosity. The cause for this lies in their genes, as reported by researchers. This trait influences the cichlids' ability to adapt to new habitats.
Published With hybrid brains, these mice smell like a rat



Mice lacking an olfactory system have had their sense of smell restored with neurons from rats, the first time scientists have successfully integrated the sensory apparatus of one species into another.
Published Synthetic droplets cause a stir in the primordial soup



Our bodies are made up of trillions of different cells, each fulfilling their own unique function to keep us alive. How do cells move around inside these extremely complicated systems? How do they know where to go? And how did they get so complicated to begin with? Simple yet profound questions like these are at the heart of curiosity-driven basic research, which focuses on the fundamental principles of natural phenomena.
Published Scientists replace fishmeal in aquaculture with microbial protein derived from soybean processing wastewater



Scientists have successfully replaced half of the fishmeal protein in the diets of farmed Asian seabass with a 'single cell protein' cultivated from microbes in soybean processing wastewater, paving the way for more sustainable fish farming practices.
Published Advanced cell atlas opens new doors in biomedical research



Researchers have developed a web-based platform that offers an unprecedented view of the human body at the cellular level. The aim is to create an invaluable resource for researchers worldwide to increase knowledge about human health and disease.
Published How immune cells communicate to fight viruses



Chemokines are signalling proteins that orchestrate the interaction of immune cells against pathogens and tumors. To understand this complex network, various techniques have been developed to identify chemokine-producing cells. However, it has not yet been possible to determine which cells react to these chemokines. Researchers have now developed a new class of genetically modified mice that enables the simultaneous identification of chemokine producers and sensors.
Published Cells may possess hidden communication system



Cells constantly navigate a dynamic environment, facing ever-changing conditions and challenges. But how do cells swiftly adapt to these environmental fluctuations? A new study is answering that question by challenging our understanding of how cells function. A team of researchers suggests that cells possess a previously unknown information processing system that allows them to make rapid decisions independent of their genes.
Published Researchers uncover 'parallel universe' in tomato genetics



Researchers have made a breakthrough for evolutionary biology of the Solanaceae family, which includes peppers, potatoes and petunias.
Published Why can't robots outrun animals?



Robotics engineers have worked for decades and invested many millions of research dollars in attempts to create a robot that can walk or run as well as an animal. And yet, it remains the case that many animals are capable of feats that would be impossible for robots that exist today.
Published Unveiling the mysteries of cell division in embryos with timelapse photography



The beginning of life is shrouded in mystery. While the intricate dynamics of mitosis is well-studied in the so-called somatic cells -- the cells that have a specialized function, like skin and muscle cells -- they remain elusive in the first cells of our bodies, the embryonic cells. Embryonic mitosis is notoriously difficult to study in vertebrates, as live functional analyses and -imaging of experimental embryos are technically limited, which makes it hard to track cells during embryogenesis.
Published Researchers unveil PI3K enzyme's dual accelerator and brake mechanisms



The enzyme PI3K plays a critical role in cell migration. Scientists have long understood this function. But researchers have recently unveiled that a subunit of this enzyme also has the ability to slam on the breaks to this process.