Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: Quantum Physics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genetic mosaicism more common than thought      (via sciencedaily.com)     Original source 

Researchers found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality. Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings. The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.

Physics: General Physics: Quantum Physics
Published

Theory and experiment combine to shine a new light on proton spin      (via sciencedaily.com)     Original source 

Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions from the very glue that holds protons together.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

More than spins: Exploring uncharted territory in quantum devices      (via sciencedaily.com)     Original source 

Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How a tiny device could lead to big physics discoveries and better lasers      (via sciencedaily.com)     Original source 

Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

New approach to Epstein-Barr virus and resulting diseases      (via sciencedaily.com)     Original source 

The Epstein-Barr virus can cause a spectrum of diseases, including a range of cancers. Emerging data now show that inhibition of a specific metabolic pathway in infected cells can diminish latent infection and therefore the risk of downstream disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New 'atlas' provides unprecedented insights on how genes function in early embryo development      (via sciencedaily.com)     Original source 

Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Quantum Physics
Published

Shedding light on the chemical enigma of sulfur trioxide in the atmosphere      (via sciencedaily.com)     Original source 

Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel approach to interrogate tissue-specific protein-protein interactions      (via sciencedaily.com)     Original source 

Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tracking down the genetic causes of lupus to personalize treatment      (via sciencedaily.com)     Original source 

Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Sexual parasitism helped anglerfish invade the deep sea during a time of global warming      (via sciencedaily.com)     Original source 

Members of the vertebrate group including anglerfishes are unique in possessing a characteristic known as sexual parasitism, in which males temporarily attach or permanently fuse with females to mate. Now, researchers show that sexual parasitism arose during a time of major global warming and rapid transition for anglerfishes from the ocean floor to the deep, open sea.

Physics: General Physics: Optics Physics: Quantum Physics
Published

New discoveries about the nature of light could improve methods for heating fusion plasma      (via sciencedaily.com)     Original source 

Scientists have made discoveries about light particles known as photons that could aid the quest for fusion energy.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: Genetics
Published

Gene could unlock big wheat yields for a growing population      (via sciencedaily.com)     Original source 

A study has discovered molecular pathways regulated by a gene traditionally used to control wheat-flowering behavior could be altered to achieve greater yields.

Biology: Biochemistry Biology: Biotechnology Ecology: Animals Ecology: Endangered Species Ecology: Nature
Published

Escaped GMO canola plants persist long-term, but may be losing their extra genes      (via sciencedaily.com)     Original source 

Populations of canola plants genetically engineered to be resistant to herbicides can survive outside of farms, but may be gradually losing their engineered genes, reports a new study.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy      (via sciencedaily.com)     Original source 

Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

Study finds widespread 'cell cannibalism,' related phenomena across tree of life      (via sciencedaily.com)     Original source 

Researchers describe cell-in-cell phenomena in which one cell engulfs and sometimes consumes another. The study shows that cases of this behavior, including cell cannibalism, are widespread across the tree of life. The findings challenge the common perception that cell-in-cell events are largely restricted to cancer cells. Rather, these events appear to be common across diverse organisms, from single-celled amoebas to complex multicellular animals.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Drug-like inhibitor shows promise in preventing flu      (via sciencedaily.com)     Original source 

Currently available flu medications only target the virus after it has already established an infection, but what if a drug could prevent infection in the first place? Now, scientists have designed drug-like molecules to do just that, by thwarting the first stage of influenza infection.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Studies reveal cell-by-cell changes caused when pig hearts and kidneys are transplanted into humans      (via sciencedaily.com)     Original source 

Two new studies detail the changes seen at the single-cell level in pig organs and recipient human bodies before, during, and just after the xenotransplantation surgeries in the decedents.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clarifying the cellular mechanisms underlying periodontitis with an improved animal model      (via sciencedaily.com)     Original source 

Although periodontitis is an extremely prevalent disorder, it is challenging to conduct detailed and comprehensive analyses of its progression at the cellular level. Recently, researchers developed an improved periodontitis mouse model that simplifies the collection and analysis of multiple periodontal tissue types. Using this model, they clarified the role of an important signaling pathway in the inflammatory response of periodontal tissue, paving the way for better diagnostic and therapeutic strategies for periodontitis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Ecology: Extinction
Published

Genes provide hope for the survival of Arabia's last big cat      (via sciencedaily.com)     Original source 

The release of captive bred animals carefully selected for their genes can make a significant contribution to the successful recovery of the dwindling wild population and avert the prospect of extinction. Despite revealing extremely low levels of genetic diversity in the wild leopard population in Oman, the research team discovered higher levels of genetic diversity in captive leopards across the region. This important genetic resource has the potential for a major role in successful recovery of the Arabian leopard.